版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 2.与半径垂直1.经过半径的外端;OAOA是O O的半径OAlOAl于Al l是O O的切线. O。ABP过圆外一点可以引圆的几条切线?过圆外一点可以引圆的几条切线?在经过圆外一点的切线上,这一点和切点之间的线在经过圆外一点的切线上,这一点和切点之间的线段的长叫做段的长叫做这点到圆的切线长这点到圆的切线长。OPAB切线切线与与切线长切线长是一回事吗?是一回事吗?它们有什么区别与联它们有什么区别与联系呢?系呢? 切线切线:不可以度量。不可以度量。切线长:切线长:可以度量。可以度量。B OABP思考思考:已知已知 O切线切线PA、PB,A、B为切点,把圆沿着直线为切点,把圆沿着直线OP对折对折,
2、你能你能发现什么发现什么?12请证明你所发现的结论。请证明你所发现的结论。APOBPA = PBOPA=OPB证明:证明:PAPA,PBPB与与O O相切,点相切,点A A,B B是切点是切点 OAPAOAPA,OBPBOBPB 即即OAP=OBP=90 OA=OB,OP=OP RtRtAOPRtAOPRtBOP(HL)BOP(HL) PA = PB OPA=OPB试用文字语言试用文字语言叙述你所发现叙述你所发现的结论的结论PA、PB分别切分别切 O于于A、BPA = PBOPA=OPB 从圆外一点引圆的两条切线,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分它们的切线长相
3、等,圆心和这一点的连线平分两条切线的夹角。两条切线的夹角。 几何语言几何语言:反思反思:切线长定理为证明:切线长定理为证明线段相等线段相等、角相角相等等提供新的方法提供新的方法OPABAPOB 若连结两切点若连结两切点A A、B B,ABAB交交OPOP于点于点M.M.你又能得你又能得出什么新的结论出什么新的结论? ?并给出证明并给出证明. .OP垂直平分垂直平分AB证明:证明:PAPA,PBPB是是O O的切线的切线, ,点点A A,B B是切点是切点 PA = PB OPA=OPB PABPAB是等腰三角形是等腰三角形,PMPM为为顶角顶角的平分线的平分线 OP垂直平分垂直平分ABMAPO
4、。B 若延长若延长PO交交 O于点于点C,连结,连结CA、CB,你又你又能得出什么新的结论能得出什么新的结论? ?并给出证明并给出证明. .CA=CB证明:证明:PAPA,PBPB是是O O的切线的切线, ,点点A A,B B是切点是切点 PA = PB OPA=OPB PC=PCPC=PC PCA PCB AC=BCAC=BCC探究:探究:PA、PB是是 O的两条切的两条切线,线,A、B为切点,直线为切点,直线OP交于交于 O于点于点D、E,交,交AB于于C。BAPOCED(1)写出图中所有的垂直关系)写出图中所有的垂直关系OAPA,OB PB,AB OP(3)写出图中所有)写出图中所有相等
5、的线段相等的线段(2)写出图中与)写出图中与OAC相等的角相等的角OAC=OBC=APC=BPCOA=OB=OD=OE, PA-=PB, AC=BC, AE=BE 下面是一块三角形的铁皮,如何在它上面截下一块下面是一块三角形的铁皮,如何在它上面截下一块圆形的用料,并且使截下来的圆与三角形的三边都相圆形的用料,并且使截下来的圆与三角形的三边都相切?切?思考:ABC与三条边相切的圆的圆心必须满足什么条件?与三条边相切的圆的圆心必须满足什么条件?圆心到三边的距离相等圆心到三边的距离相等角平分线角平分线上的点到角的两边的距离相等上的点到角的两边的距离相等三角形的三条角平分线相交于一点,这一点到三条三角
6、形的三条角平分线相交于一点,这一点到三条边的距离相等,这一点就是圆心。边的距离相等,这一点就是圆心。3应用新知,迁移拓展应用新知,迁移拓展1、与三角形各边都相切的圆叫做与三角形各边都相切的圆叫做三角形的三角形的内切圆内切圆2、内切圆的圆心是内切圆的圆心是三条角平分线三条角平分线的交的交点点,叫做,叫做 三角形的内心三角形的内心 。BDEFOCA 切线长定理切线长定理 从圆外一点引圆的两条切线,它从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两们的切线长相等,圆心和这一点的连线平分两 条切线的夹角条切线的夹角。 APO。BECDPA、PB分别切分别切 O于于A、BPA = P
7、B ,OPA=OPBOP垂直平分垂直平分AB 切线长定理为证明切线长定理为证明线段相等,角线段相等,角相等,弧相等,垂直关系相等,弧相等,垂直关系提供了理论提供了理论依据。必须掌握并能灵活应用。依据。必须掌握并能灵活应用。练习练习.如图,如图,ABC中中,C =90 ,它的它的内切圆内切圆O分别与边分别与边AB、BC、CA相切相切于点于点D、E、F,且,且BD=12,AD=8,求求 O的半径的半径r.OEBDCAFBDEFOCA如图,如图,ABC的内切圆的半径为的内切圆的半径为r, ABC的周长为的周长为l,求求ABC的面积的面积S.解:解:设设ABC的内切圆与三边相切于的内切圆与三边相切于D、E、F,连结连结OA、OB、OC、OD、OE、OF,则则ODAB,OEBC,OFAC.SABCSAOBSBOC SAOC ABOD BCOE ACOF21212121 lr设设ABC的三边为的三边为a、b、c,面积为,面积为S,则则ABC的内切圆的半径的内切圆的半径 r2Sabc三角形的内切圆的有关计算三角形的内切圆的有关计算(1)圆的切线和切线长相同吗?)圆的切线和切线长相同吗?(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉溪师范学院《网球主项》2021-2022学年第一学期期末试卷
- 玉溪师范学院《社会体育指导员培训》2021-2022学年第一学期期末试卷
- 化学第十章烃教案
- 测量仪器账务处理实例-记账实操
- 水泥基渗透结晶防水涂料施工指南
- 欣赏竹子课件
- 2024年电子、通信产品及软件批发服务项目成效分析报告
- 2024年羟丙纤维素项目评估分析报告
- 2019粤教版 高中美术 选择性必修2 中国书画《第四单元 意境深邃的山水画》大单元整体教学设计2020课标
- 财务部协调营运部合同
- 高三家长会班主任发言稿课件
- 医疗质量管理与持续改进记录表
- 最新《辅酶q10》课件
- 二 年级上册美术课件-《雪花飘飘》|北京课改版 (共25张PPT)
- 西方医学史概要课件
- 分布式光伏屋顶调查表
- 新中国十大元帅!课件
- SAP成本核算与成本控制课件
- 幼儿园小朋友认识医生和护士课件
- 岳阳楼记诗歌朗诵背景课件
- 2022年消防安全知识考试题库及答案
评论
0/150
提交评论