毕业设计英文翻译燃煤火电厂的热风箱的重新改建._第1页
毕业设计英文翻译燃煤火电厂的热风箱的重新改建._第2页
毕业设计英文翻译燃煤火电厂的热风箱的重新改建._第3页
毕业设计英文翻译燃煤火电厂的热风箱的重新改建._第4页
毕业设计英文翻译燃煤火电厂的热风箱的重新改建._第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、燃煤火电厂的热风箱的重新改建Mustafa Zeki YILMAZO ?GLU, Ali DURMAZ嘎子大学工程学院机械工程系摘要:火电厂的重新改造可能是应对能源需求的最快方法同时是降低每发出1千瓦时电能所排放二氧化碳量的有效方法。在火电厂的热风箱重新改建的研究中使 用的是热力仿真研究的方法。索玛火电厂是在 1957年开始运作的并且一直工作 到2010年。在目前的形势下,该火电厂的装机容量是 44MWeJ采用两个单元。 锅炉被设计与一种较低热值为 3550千卡/公斤的索马褐煤配合运行。这里对一个 单元进行了仿真以确定误差百分比。在新空气通入改建后的热风箱的情况下进行 了仿真并且将结果进行了比

2、较。在仿真中,燃气轮机功率占原始安装的功率的 10%至22%。根据那些研究结果,净功率从11%提高到27%,在进行改建后单 位装机容量的二氧化碳排放量减少了约 7%。关键词:热风箱,动力装置改建,二氧化碳减排量,热电厂,联合循环1.概述由于人口的增长和产业化的提高导致人类的能源需求迅速增加。结果,电力消耗和因发电而导致的温室气体排放也在增加。 近年来,因为认识到了化石燃料燃烧 的风险使有效利用能源,可再生能源和全球变暖成为主要的研究项目。联合循环 发电厂与传统的单周期发电厂相比由于其有效地利用了能源所以成为首选发电 系统。然而,传统火电厂仍以其低净电效率在运行。在土耳其,火电厂一般用褐 煤来发

3、电。由于老化和运行的问题,这些电厂的净电效率在逐年降低。因此,对 这些电厂进行改造可以增加他们的能源效率,并减少其对全球变暖风险的影响。动力装置改建可以被定义为增加装机容量及净电效率,降低火电厂的排放量。 通常,燃气轮机将被添加到该循环中的热动力装置改建的应用中。给水加热,热风箱和动力装置改建是 3个最常用电厂实施的改造方案(埃斯科萨和罗密欧, 2009)。在给水加热中,蒸汽轮机的提取点被废止,给水加热的热量是由回收蒸 汽发生器(HRSG或是一个太阳能场(波波夫,2011)提供的。航改式燃气轮机, 容量为现有电厂的12%-30 %,给出了最佳的电厂给水改造的应用优化结果。改建热风箱动力装置可以

4、通过3种方法被推广应用。第一种是:来自燃气轮机 的废气被输送到原来的锅炉,废气中的氧气含量一般来说是足够点燃煤粉颗粒 的。然而,由于高温废气,燃烧器部分不得不采用高温耐磨材料(图1)。第二种方法:废气可以通过通入新空气以降低燃烧气体的温度,并增加气体流氧气含量(图2)。第三种方案:省煤器安装在燃气轮机之后并且给水是从省煤器中加 热的(图3)。111燃气轮机和一个回热蒸汽发生器被安装在并联动力装置改建中,并且额外的蒸汽被送入蒸汽轮机中。额的燃气轮机堆叠的并联电厂改造给电厂的运行带来 了灵活性(亚玛索?路和杜马士,2011)。在所有的应用中,在适当的选择燃气轮 机和HRSG&合条件下增加容量(马斯

5、里,2008;卡拉佩利,2009)。ETP,-A A嗣炉天然气二-0 込护 事吧轮机 _I图3.预冷热风箱的应用在火电厂,电厂改造降低了每台机组的二氧化碳排放量(申克和艾伦,2003;沃尔特斯,2008)。在电厂改造的应用中最重要的参数是设备的预期寿命。因此,一个详细的寿命分析必须在改造之前进行。此外,燃气轮机和回热蒸汽发生器的选择在改造后对于火力发电厂的运行是至关重要的(雅科夫奥斯等人,1998;马修 1998)。对于动力装置改建的分析,燃气轮机优势和动力装置改建效率是决定性参数。 动力装置改建的效率可以被定义为在该循环中发电上的增长量与热量的增长量 的比值,在式(1)中给出。下标ar和br

6、分别代表改造后和改造前。动力装置改 建之后,由于燃气轮机的存在使发电量增加。 此外,天然气消耗量增加并且其产 生的热量加到该循环中。燃气轮机效率可以被定义为发电增量与燃气轮机装机的 速率的比值,在式(2)给出。在一个典型的装机容量为400 MWe勺联合循环发电 厂中,约67%发电容量是由燃气轮机供给的。然而,在动力装置改建的情况下, 它是约占10% -25 %的,这会导致选择较小的燃气轮机。此外,这一结果会直接 关系到电厂的第一投资成本的。在表1中,给出的是在土耳其火电厂的投入运行的日期,安装容量,台数,燃 料类型,以及燃料的较低的热值(LHV较高的热值(HHV。在土耳其褐煤是发 电的主要燃料

7、资源,并且越低等级的褐煤一般都用于发电。 其中的大多数火电厂 都是在80年代中期开始投入运行的。因此,这些电厂的净电效率和可用性由于设 备的老化已随时间而降低了。所有这些可以通过对燃气轮机等设备的详细性能分 析后将其动力设备重新改造。在这项研究中,对索玛火电厂进行了检查并且通过使用一款商业软件对这个火 电厂的热风箱动力装置改建的应用进行了研究。2010年索玛火电厂被淘汰,目前, 已安装电厂的容量为44 MWeJ具有2个单元。当前的配置,加上新空气通入改建 后的热风箱动力装置情况下具有不同的燃气轮机发电率,并进行了仿真。在仿真 中,燃气轮机功率相对于原始的安装功率的变化率从 10%到22%。这意

8、味着,燃 % _ %P1,CT气轮机的选择范围为每个22 MWe单元在2和4.4MWe之间。除了在该文献中,在 对实际电厂的数据进行分析以显示一个动力装置改建应用的好处。表1. 土耳其的火电厂的一般特性电厂名称电厂地址投运时间芸“昼: MW!)噓料类型LJIV-illlVkrai; kg|IM Mart on20033202Licnite210 2saiA唧 n Elbisinn AA bin応笙1MS|扇Lijniite审阳tG(MA Rin Sbtotiffi B2naimoiLifpiilr950 )500AltnAlUgn/ixihir1075iso6Diml10,300 12,000

9、AmkirhXGAmbj-h i&tfitibuJ1!JW*0NauiraJ85UO DISSAnihmrliFud oilAvnUr1967305Riel oil10.I5GBursn XGi( (m1 1326Naliaral 任時XI伽 10,127Gu占h瞰ii乃旳电讪laic1!W930021 lardl C(KI13200 35WEhiidiubuiLulcbujsa%/ tCirklftreli1085112012Numral gMHOGO S9H0ilupallupa A ri tin1073鶴sFWL oil!XXO ID.17Kanj(aJ1WJL4573Lignite)3

10、W-HUIOrhahHiOrhsmtf-li/ Hiirsri19922Wr2250 M50ScyitiimvrSpjiirimrr/Kiilahya1973600iLijmitf15(10 20(10Sonia A1!57対2Ligliitr3050 J3TOSomn l!Svinn.lfML103-1821W 20IQTuncbikkIhncbkldc/Ktiuliyn19.19(197#365Ugnitc19D&C3D5Lisniit?21IJO 21IXJ、計t翊耳n/ i hi言1 吕193G303Lihile2100 対 00YcnikoarMujU*1W7L202Licnjite

11、2W 2400AukArw19820006602-2Ugnitr271)6 3950数据取自ELEKTRK UretimA. ?。(发电公司) 注:LHV:燃料的较低的热值HHV燃料的较高的热值2.当前的形势和热风箱的应用索玛火电厂是根据表2的数据在1957年设计的。该电厂在恒定最大负荷,第四 工况下运行。在研究中,对索玛火电厂进行了仿真并把结果与真实的电厂数据进 行了比较,在表3中给出。根据仿真的结果,得到一个可接受的误差百分比。在计算净电效率时出现了最 高误差。净电效率是产生的净发电量和输入到循环的热量的比值。在净发电的情况下,误差百分比为0.56 %。结论是,输入的热量是导致净电效率误差

12、的主导因 素。有很多参数影响着热量的输入,如空气的温度,水分含量,以及煤颗粒的温 度。在第二步骤中,对所提供的系统通入新空气进行了仿真。热风箱动力装置改建可以通过3种不同的方式来实现。在第一个选项,燃气轮机的废气被输送到燃 烧器,如图1。在此选项中,给水是通过安装在锅炉后的两个省煤器来加热的。 在直接热风箱应用中,由于燃气轮机的高温废气不得不对燃烧器和其它相关设备 进行改造。因此,增加了电厂改造的第一个投资成本。此外,由于燃气轮机中废 气的低含氧量(13%-14 %),燃烧的问题可能会在蒸汽锅炉中出现。因此,新空 气通入是必要的,以降低投资成本,防止燃烧的问题出现。新空气通入的应用显 示在图2

13、。在此选项中,新空气通到燃烧气体中,以增加氧含量,并降低燃烧器 入口温度。表2.索玛火电厂的设计数据P412345(MW)1121799NA;kiri省誤器入口62,6&57 |7072点包由口59.66L5646869,8迂热養出匸59460562J6566.2rc)迂擀兗db 口前莖汽鼻生拒9:P 487.7487 1 :486.5486.4怖護話人匚*鼻139165180192196若就器出匸水工197216230242245过碑器的入口汽工826872079vir98011)00过整狂的出匚汽湼239261278296302三气日妊览的出U 全雯206.5213222.5226.522

14、8129hnF152160162.5予呈茂呈(t/h)6.9611.415.6203 60,6933121,4150.8161.5 - - f30517296105工作条件:1技术最小负荷;2,恒定的最小负载;3,正常负荷;4,恒定的最大负荷;5 ,瞬时最大负荷表3。设计数据与仿真结果的比较i单兀的净功率:MW)|设计敎据w仿真结果21.877i吴差/ 10.5S净电效率%)303155.6灰渣温農)160157.82-1.36空汽预熱器的空气岀口温慶226.52260.22燃烧汽体质里流重(t/b)1M.8K842旷燃油消耗(t/h ) |20.320J5在第三个方案中,将预冷系统安在燃气轮

15、机之后,如示于图3。燃烧气体的温度可以降低到一个可接受的范围内。 然而,预冷系统的第一投资成本比通入新空 气要高。因此,通入新空气的系统在仿真时被选择作为基准。3.结果在仿真中,对不同的燃气轮的功率比的作用进行了研究。燃气轮机的功率比可被定义为是所选择的当前燃气轮机安装功率的比。 改装后的蒸汽轮机和冷凝器的 质量流量会增加。由于防止了蒸汽泄露,可以将 20%的增量界限作为设计参考。 因此,燃气轮机的选择与冷凝器或蒸汽轮机质量流量的比率增加值有直接关系。 不同燃气轮机的功率比对改装动力装置后的热电厂性能的影响如图4所示。根据燃气轮机的功率比(讥改建动力装蛊败率TOO (%) 燃T轮机功率比()讦

16、燃吒轮机的优势 -)L6 18202224这些计算结果,最大质量流量比率是燃气轮机功率的22%其中在目前条件下这个 燃气轮机的装机功率为4.44 MWel。燃气轮机的天然气消耗量为0.338千克/秒。 净电效率和净热耗率几乎保持不变。然而改装动力装置后的火电厂装机容量为 29.192 MWel。燃气轮机发电率分别与动力装置改建效率和燃气轮机优势的变化 关系如图5所示。燃气轮机功率比(%I*_ 燃气轮机功率比(%)VS净功率增如值(% ). 燃气轮机功率比净熱率变化量(%)- 燃汽轮机功率比(V右蒸汽隅轮机功率増加值%)- 燃气轮机功率比(%) VS冷虞器质量流量増加值(- 燃气轮机功率比VS净

17、电效率变化量(% )图4.燃气轮机发电率在改造动力装置后的火电厂中的性能作用燃气轮机的功率比()变化率100.4-图5。动力装置改建的效率和燃气轮机优势的变化根据计算结果,动力装置改建效率和燃气轮机优势分别为31.6 %和1.31,为燃气轮机发电率的22%。在一个单一的气体涡轮发电机组中, 燃气轮机优势是1, 并且在一个联合循环发电机组中,其优势通常为1.5。结果表明功率增量是用较 小的燃气轮机的装机功率与联合循环的传统燃气 /蒸汽装机功率比来实现。燃气 轮机优势可以近似的用一个4.4 MWel燃气轮机代替装机容量为44 MWe的燃气轮 机。改建热风箱动力装置相对于二氧化碳的排放量和燃料消耗的

18、结果如图6所示。电厂的二氧化碳总排放量增加。然而,当与设计的二氧化碳排放量进行比较时每 1MWe装机容量的二氧化碳排放量减少。结果,通过改建热电厂的动力装置降低 二氧化碳排放量也有可能增加装机容量。因燃烧产生的二氧化碳被认为是造成全 球变暖原因,特别是用于发电的燃烧。因此,国家可以通过改建火电厂的动力装 置在短期内达到减少二氧化碳排放量的要求。从长远来看,其他能源转换系统如气化炉可再生能源技术综合热电厂或不得不直接开发可再生能源。燃气轮机的功率比()_ 燃气轮机的功率比 VS毎沁匚氧化碳问非放隆低比率(% )燃气轮机的功率比(%)VS煤耗率的増率(-一一 煤炭消费量变化(千克秒图6.二氧化碳的

19、排放量和燃料消耗率的变化对索玛火电厂动力装置改建应用的经济性分析结果如图7所示。投资回收期可以被定义为初始投资成本与执行情况的年度效益的比值。投资回收期忽略了货币的时间价值。但是,它是决定一个项目实施的一个有用工具。在图7中,显示出了回报的时间与燃气轮机功率比率的变化。在计算中,燃气轮机,省煤器,管道 和工程费用的成本之和作为动力装置改建项目的初始投资成本。火电厂的全年运行时间取为6000小时。该装置的电力销售价格和单位的天然气购买价格分别为 0.119美元/千瓦时和0.281$/立方米。随着燃气轮机功率比的增长回报时间逐渐 减少。用22%燃气轮机的功率比投资回收期为1.58年。丄g燃气轮机的

20、功率比()收期收期年年】图7.投资回报期与不同燃气轮机功率比的变化4.结论在这项研究中,对索玛火电厂与不同燃气轮机功率比在热风箱动力装置改建技 术的经济性进行了研究。新空气通入改建后的热风箱动力装置由于具有较低的初 始投资成本和比其他的替代品有较少操作问题的优势而被选择使用。根据研究结果,索玛火电厂的装机容量由 22MWe增至29 MWel并且选择4.4MWel的燃气轮 机配合。此外,每发电1MWe其二氧化碳排放量下降8%。因此,在发电厂安装 容量增大时可能会减小二氧化碳排放量。 经济分析结果表明,投资回收期在新空 气通入改建后的热风箱动力装置为 1.58年。简而言之通入新空气到索玛火电厂 的

21、改建后的热风箱动力装置是必要的, 可以避免这种火电厂的淘汰。总之,火电 厂的动力装置改建在不需要新建火力发电厂的情况下增加了装机容量和降低了 二氧化碳的排放。致谢特别感谢索玛火电厂的管理人员和工人。我们还深为感谢来自土耳其外交开发的 部的资助(批准号:DPT 2008年颁发120630)。翻译原文Turkish J Eng Env Sci(2013) 37: 33-41cT_ UBITAKdoi:10.3906/muh-1203-3Turkish Jour nal of Engin eeri ng & En viro nmen tai Scie nceshttp:/journals.tubit

22、.tr/engineering/Research ArticleHot win dbox repoweri ng of coal-fired thermal power pla ntsMustafa Zeki YILMAZO?GLU?,Ali DURMAZDepartment of Mechanical Engineering, Faculty of Engineering, Gazi University,Maltepe, Ankara, TurkeyReceived: 05.03.2012 ? Accepted: 21.11.2012 ? Published Online:04

23、.03.2013 ? Printed: 01.04.2013Abstract:The repowering of thermal power plants could be the fastest way to respond to the energydemand whiledecreasing the CO 2 emissions per kilowatt hour of energy generated. Hot windbox repowering ofa thermal power plantwas investigated in this study using Thermofle

24、x simulations. The SomaA thermal power plant began operation in 1957and was in service until 2010. In the current situation, the installed capacity of the power plant is 44 MW el, with 2units. The boiler was designed to operate with Soma lignite, with a lower heating value of 3550kcal/kg. The curren

25、tsituation of one unit was simulated to determine the percentages of errors with respect to thedesign data. A fresh airdilution hot windbox repowering case was simulated and the results were compared. In the simulations, the rate of gasturbine power to the original installed power varied between 10%

26、and 22%. According to the results, the net power wasincreased from 11% to 27%, and the CQ emissions per installed capacity were decreased by approximately 7% afterrepowering.Key words: Hot windbox, repowering, CQ 2 reduction, thermal power plant, combined cycle1. In troduct ionThe en ergy dema nds o

27、f huma ns in crease rapidly because of in creas ingpopulati onandin dustrializati on. As aresult, electricity consumption and greenhouse gas emissions due to power generation in crease. In recent years,efficient use of energy, renewable energy research, and the risk of global warming due to fossil f

28、uel combusti onhave been major research areas. Combined cycle power plants are the preferred power gen erati on systems dueto their efficie nt use of en ergy whe n compared to conven ti onal sin gle cycle powerpla nts. However, old thermalpower plants are still in operationwith low net electriceffic

29、iencies.In Turkey,lig nite is gen erally used for powergeneration in thermal power plants. The net electricefficiencyof these power plantsdecreases with time dueto aging and operationalproblems. Therefore, the repowering of these power plantscan in crease their en ergyefficie ncy and reduce their co

30、n tributi on to the global warm ing risk.Repoweri ng can be defi ned as in creas ingthe in stalledcapacity and the net electricefficie ncy and decreas ingthe emissi ons per in stalled capacity of an exist ingthermal power pla nt. Gen erally,a gas turb ine is added tothe cycle in thermal repoweri ng

31、applicati ons. Feedwater heati ng, hot win dbox, and parallel repoweri ng are 3 ofthe most com monly impleme nted repoweri ng optio ns (Escosa and Romeo, 2009). I n feedwater heati ng, steamturbine extract ion points are repealed and heati ng of the feedwater is supplied from a heat recovery steamge

32、nerator (HRSG) or a solar field (Popov, 2011). Aeroderivative-type gas turbines, with a capacity of 12%-30%of the exist ing power pla nt, give the optimum results for feedwater repoweri ng applicati ons./Correspondence: .tr33YILMAZOGLU and DURMAZ/Turkish J Eng Env SciHot windbo

33、x repowering can be applied using 3 methods. In the first one, the exhaust gas from a gasturb ine is fed into the origi nal boiler, and the O2 content of the exhaust gas isgen erally eno ugh to fire thecoal particles. However, due to the high temperature of the exhaust gas, the burner sect ion has t

34、o be upgradedwith high-temperature-esista nt materials (Figure 1). I n the sec ond method, theexhaust gas can be dilutedby fresh air to decrease the temperature of the combusti on gases and to in creasethe O 2 content of the gasgasstream (Figure 2). I n the third opti on, an econo mizer is in stalle

35、d after the gas turb ine and feedwater heat ingis obta ined from the econo mizer (Figure 3).HP IP LPCondenserGenerator IFeed water heatersDeaeratorBoilerGasturbineCoolingtowerCondensate pumpPumpFeed water heatersStackCombustiongasCoalA-A B-BB-B A-AGenerator IINaturalgasFigure 1. Direct hot windbox r

36、epowering.HP IP LPCondenserGen erator IDearatorBoilerGasturbi neCooli ngtowerConden satepumpPumpFeed waterheatersStackDilutedEconomizersteamCoalA-A B-BB-B A-AFreshairFeed waterheatersGen erator IINaturalgasFigure 2. Fresh air dilution hot windbox repowering.In parallelrepoweri ng,a gas turbi neand a

37、 HRSGare in stalledand additi onalis fed into the steamturb in es. A parallel repoweri ng applicati on with additi onal gas turb ine stack ingbrings flexibility to the powerplant s operation (Y?mazo?lu and Durmaz, 2011).In all of the applications, thecapacity is in creased with aproperly selected ga

38、s turb ine and HRSG comb in ati on (El Masri, 2008; Carapellucci, 2009).34YILMAZOGLU and DURMAZ/Turkish J Eng Env SciHP IP LPCondenserGenerator IDeaeratorBoilerGasturbineConden satetowerConden satepumpPumpFeed waterheatersStackCombustiongasCoalA-A B-BB-B A-Ato drumGenerator IIFeed waterheatersNatura

39、lgasFigure 3. Precooling hot windbox application.In thermal power pla nts,repoweri ng reduces the CO emissi ons per in stalledcapacity(She nk and Ehre n,2003; Walters, 2008). The most importa nt parameter in repoweri ng applicatio ns isthe expected life of theequipme nt. Therefore, a detailed life e

40、xpecta ncy an alysis has to be carried out before repoweri ng. Moreover,gas turbine and HRSGselection is crucial for the operation of a thermal power plant after repowering (D Yakovet al., 1998; Mathieu 1998).For the repoweri ng an alysis, gas turbi ne leverage and repoweri ng efficie ncy aredecisiv

41、e parameters.Repoweri ng efficie ncy can be defi ned as the rate of in creme nt in the electricitygen erati on to the in creme ntin the heat added to the cycle, given in Eq. (1). The subscripts ar and br symbolize after repoweri ng andbefore repoweri ng, respectively. After repoweri ng, the electric

42、ity gen erati on isin creased due to the gas turb ine.Furthermore, the n atural gas con sumpti on and, as a result, the heat added to thecycle, are in creased. Gasturbine leveragecan be defi ned as the rate of in creme nt in the electricitygen erati on to the gas turb ine in stalledcapacity, give n

43、in Eq. (2). In a typical comb ine cycle power pla nt with an in stalled capacity of 400 MW el ,approximately 67% of the electricity gen erati on capacity is supplied from the gasturbine. However, i n the caseof repowering, it is approximately10%-25%, and this results in a smaller gas turbineselect i

44、on. Moreover, thisresult is directly related to the first in vestme nt cost of the power pla nt.n rep =PelQg=Par - P brQar - Qinbr(1)入GT =PelFbl,GTAlia ?ga Alia ?ga/ Izmir 1975 180 6 Diesel 10,300T2,000=Par - PbrFei,GTIn Table 1, the date of the first operati on, in stalled capacity, nu mber of un i

45、ts,fuel type, and lower heati ngvalue (LHV)-higher heating value (HHV) of the fuel of thermal power plants in Turkey are give n. Lig nite is themain fuel source in electricity generation in Turkey and low-rank lignite is gen erally used for power gen erati on.Most of the thermal power pla nts were f

46、irst operated in the mid-1980s. Therefore,the net electric efficie ncy and availabilities of these power pla nts have decreased with time due to the age ing ofthe equipme nt. All of thesecan be repowered by gas turb ines after a detailed performa nee an alysis of the equipme nt.In this study, the So

47、ma A thermal power pla nt was exam ined and the applicati on ofhot win dboxrepowering of the thermal power plant was investigatedusing commercial Thermoflexsoftware. The Soma35YILMAZOGLU and DURMAZ/Turkish J Eng Env SciA thermal power pla nt was decommissi oned in 2010. Curre ntly,the in stalledcapa

48、cityof the power pla nt is44 MWl , with 2 units.The current configuration,along with fresh air dilutionhotwin dbox repoweri ng caseswith differentgas turbine power rates, was simulated. In the simulations, the rateof gas turb ine power to theorigi nal in stalled power varied from 10% to 22%. This me

49、ans that the gas turbi neselect ion range is betwee n 2and 4.4 MWel for each 22 MW el unit. Apart from the literature, real power plant dataare simulated to showthe ben efits of a repoweri ng applicati on.Table 1. General characteristics of thermal power plants in Turkey.Name PlaceYear of first Inst

50、alled Number ofFuel typeFueloperation capacity units LHV-HHV(MW) (kcal/kg)18 Mart C , an C , an/C , anakkale 2003 320 2 Lignite 2340-2860Af, sin Elbistan A Af, sin/Kahramanmara , s 1984 1355 4 Lignite 900-600Af, sin Elbistan B Af, sin/Kahramanmara , s 2004 1440 4 Lignite 950-500Ambarl?NG Ambarl?/ Is

51、tanbul 1988 1350 9 Natural gas 8500155Ambarl?Fuel oil Avc ?lar/ Istanbul 1967 630 5 Fuel oil 9580-0,150Bursa NG Osmangazi/Bursa 1998 1432 6 Natural gas 8100-0,427C, atala ?gz? C, atala ?gz?/Zonguldak 1989 300 2 Hard coal 3200-3500Hamitabat L uleburgaz/K ?rklareli 1985 1120 12 Natural gas 8060-8980Ho

52、pa Hopa/Artvin 1973 50 2 Fuel oil 9600-0,157Kangal Kangal/Sivas 1991 457 3 Lignite 1300-430Orhaneli Orhaneli/Bursa 1992 210 1 Lignite 2350-3850Seyit omer Seyit omer/K utahya 1973 600 4 Lignite 1500-2000Soma A Soma/Manisa 1957 44 2 Lignite 3050-3200Soma B Soma/Manisa 1981 1034 8 Lignite 2400-2640Tun,

53、 cbilek Tun , cbilek/K - utahya 1956-1966-1978 365 2-1-2 Lignite 2600-3000Kemerk oy G okova/Mu?gla 1995 630 3 Lignite 2100-400Yata ?gan Yata ?gan/Mu?gla 1983 630 3 Lignite 2100-2400Yenik - oy Mu?gla 1987 420 2 Lignite 2100-400C, ay?rhan Ankara 1988-2000 660 2-2 Lignite 2700-!950*Data were taken from

54、 the Elektrik Uretim A.S , . (Electricity Generation Company).2. Current situati on and hot win dbox applicati onsThe Soma A thermal power pla nt was desig ned accord ing to the give n data in Table2, in 1957. The powerpla nt was operated at con sta nt maximum load, operatio n con diti on 4. In this

55、 stepof this study, the Soma Athermal power plant was simulated and the results were compared to real plant data, give n in Table 3.According to the results of the simulations, an acceptable percent error was found. The highest perce nterror was calculated in the net electric efficie ncy. The net el

56、ectric efficie ncyis the rate of net power gen eratedand the heat in put to the cycle. In the case of net electricity gen erati on, theperce nt error was 0.56%. Asa result, the heat in put is the dominant factor for the net electric efficie ncyperce nt error. There are manyparameters that affect hea

57、t in put, such as the temperature of the air, moisturecontent, and the temperatureof coal particles.In the second step, the offered system structure is simulated with fresh air dilution. Hot win dboxrepowering can be implemented in 3 different ways. In the firstoption,the exhaustgas of the gas turb

58、ine isfed into the bur ners, as show n in Figure 1. In this opti on, feedwater heat ing issupplied by 2 econo mizers thatare in stalled after the boiler. In direct hot win dbox applicati on,bur ners and otherrelated equipme nt haveto be modified due to the high temperatures of the exhaust gases from

59、 the gas turbine.As a result, the first36YILMAZOGLU and DURMAZ/Turkish J Eng Env Sciin vestme nt cost of repoweri ng in creases. Moreover, due to the low O2 conten t (13%-4%) in the exhaust gasesfrom the gas turbine,combustion problems can emerge in the steam boiler. Therefore,fresh air diluti on is

60、 an ecessity to lower the in vestme nt cost and preve nt combusti on problems. The freshair diluti on applicati on isshow n in Figure 2. In this opti on,fresh air is added to combustio n gases to in creasethe O 2 content and todecrease the burner inlet temperature.Table 2. Design data of the Soma A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论