版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 用下面的数据做相关分析和一元线性回归分析:选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。一、相关分析1. 作散点图普通高等学校毕业生数和高等学校发表科技论文数量的相关图从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。2. 求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果: Correlations 普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)普通高等学校毕业生数(万人)Pearson Correl
2、ation1.998*Sig. (2-tailed).000N1414高等学校发表科技论文数量(篇)Pearson Correlation.998*1Sig. (2-tailed).000N1414*. Correlation is significant at the 0.01 level (2-tailed).两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。3. 求两变量之间的相关性选择相关系数中的全部,点击确定:Corr
3、elations(万人)(篇)Kendalls tau_b(万人)Correlation Coefficient1.0001.000*Sig. (2-tailed).N1414(篇)Correlation Coefficient1.000*1.000Sig. (2-tailed).N1414Spearmans rho(万人)Correlation Coefficient1.0001.000*Sig. (2-tailed).N1414(篇)Correlation Coefficient1.000*1.000Sig. (2-tailed).N1414*. Correlation is signif
4、icant at the 0.01 level (2-tailed).注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=1.000, 呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。 两相关变量(毕业生数和发表论文数)的Spearman相关系数=1.000, 呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。4. 普通高等学校毕业生数和高等学校发表科技论文数量的相关系数将所求变量移至变量,将控制变量移至控制中,选中显示实际显著性水平,点击
5、确定:Correlations普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)普通高等学校毕业生数(万人)Pearson Correlation1.998*Sig. (2-tailed).000N1414高等学校发表科技论文数量(篇)Pearson Correlation.998*1Sig. (2-tailed).000N1414*. Correlation is significant at the 0.01 level (2-tailed).注解: 两相关变量(普通高校毕业生数和发表论文数)的偏相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p值0,小于显著性水平0.05
6、,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显著。二、一元线性回归从前面的相关分析可以看出普通高等学校毕业生数和高等学校发表科技论文数量呈高度正相关关系,所以,下面对这两个变量做一元线性回归分析。1. 建立回归方程点击选项,选中使用F的概率,如上图所示。点击继续,确定:Variables Entered/RemovedbModelVariables EnteredVariables RemovedMethod1(篇)a.Entera. All requested variables entered.b. Dependent Variable: (万人)此图
7、显示的是回归分析方法引入变量的方式。Model SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.998a.996.99611.707a. Predictors: (Constant), (篇)此图是回归方程的拟合优度检验。注解:上图是回归方程的拟合优度检验。 第二列:两变量(被解释变量和解释变量)的相关系数R=0.998. 第三列:被解释变量(毕业人数)和解释变量(发表科技论文数)的判定系数R2=0.996是一元线性回归方程拟合优度检验的统计量;判定系数越接近1,说明回归方程对样本数据的拟合优度越高,被解释变量
8、可以被模型解释的部分越多。 第四列:被解释变量(毕业人数)和解释变量(发表科技论文数)的调整判定系数R2=0.996。这主要适用于多个解释变量的时候。第五列:回归方程的估计标准误差=11.707.ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression448318.6641448318.6643271.335.000aResidual1644.53512137.045Total449963.19913a. Predictors: (Constant), (篇)b. Dependent Variable: (万人)注解:回归方程的整体显著性检验
9、回归分析的方差分析第二列:被解释变量(毕业人数)的总离差平方和=449963.199,被分解为两部分:回归平方和=448318.664;剩余平方和=1644.535.F检验统计量的值=3271.335,对应概率的P值=0.000,小于显著性水平0.05,应拒绝回归方程显著性检验的原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显著的,可以建立线性模型。CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.BStd. Erro
10、rBeta1(Constant)-316.25914.029-22.543.000(篇).001.000.99857.196.000a. Dependent Variable: (万人)注解:回归方程的回归系数和常数项的估计值,以及回归系数的显著性检验。第二列:常数项估计值=-316.259;回归系数估计值=0.001.第三列:回归系数的标准误差=0.000第四列:标准化回归系数=0.998.第五、六列:回归系数T检验的t统计量值=57.196,对应的概率P值=0.000,小于显著性水平0.05,拒绝原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量
11、(发表科技论文数)的线性关系是显著的。于是,回归方程为:yi=-316.259+0.001x2. 回归方程的进一步分析(1)在统计量中选中误差条图的表征,水平百分之95.点击继续,然后点击确定,输出每个非标准化回归系数的95%置信区间:选中统计量中的描述性,点击继续,然后确定,输出变量的均值、标准差相关系数矩阵和单侧检验概率值: Descriptive StatisticsMeanStd. DeviationN(万人)465.92186.04414(篇)932780.57221459.01914Correlations(万人)(篇)Pearson Correlation(万人)1.000.99
12、8(篇).9981.000Sig. (1-tailed)(万人).000(篇).000.N(万人)1414(篇)1414(2)残差分析选中统计量中的个案诊断,所有个案,点击继续,然后确定:Residuals StatisticsaMinimumMaximumMeanStd. DeviationNPredicted Value137.72707.16465.92185.70414Std. Predicted Value-1.7671.299.0001.00014Standard Error of Predicted Value3.1536.5364.320.99514Adjusted Predi
13、cted Value139.53713.78466.40185.62014Residual-26.27619.112.00011.24714Std. Residual-2.2451.633.000.96114Stud. Residual-2.5111.696-.0181.04814Deleted Residual-32.89620.618-.47313.40314Stud. Deleted Residual-3.4911.862-.0731.25914Mahal. Distance.0153.123.929.89014Cooks Distance.000.795.100.20514Center
14、ed Leverage Value.001.240.071.06814a. Dependent Variable: (万人)Casewise DiagnosticsaCase NumberStd. Residual(万人)Predicted ValueResidual1-2.245681707.16-26.2762.811659649.879.4943.834639628.969.7594.314625621.023.6785-.542608614.50-6.3416.061575574.71.7117-.418531536.00-4.89681.633512492.8419.1129.370448443.454.33610-.259378380.53-3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程资料合同范本
- 2024桶装水供应合同
- 2024【购房协议有法律效力】购房协议合同范本2
- 2024年家族财产继承规范协议版
- 2024年采购战略合作协议样本版
- 2024年专业食堂服务与配送外包协议版
- 2024女性珠宝配饰行业趋势洞察报告
- 2024-2030年诊断用药行业市场发展分析及发展趋势前景预测报告
- 电子商务网站域名注册及备案服务合同
- 2024-2030年艾草产业市场发展分析及发展趋势与投资战略研究报告
- halloween(万圣节英文介绍)PPT课件
- 骨关节疾病自测表
- 装载机零件目录(以徐工lw500kn为例)
- 导游APP在智慧旅游中的应用研究
- 分数的再认识(一)教学设计
- 华师八上数学-因式分解练习题-华师大
- 水利工程 验收规程PPT课件
- 汽车4S店的涉税风险分析与几个涉税疑难问题处理
- 无损检测Ⅱ级人员超声(UT)锻件门类专业知识试题及详解
- 员工岗位职责说明书
- 电动汽车无线充电技术
评论
0/150
提交评论