轻型车鼓式后制动器设计Microsoft Word 文档_第1页
轻型车鼓式后制动器设计Microsoft Word 文档_第2页
轻型车鼓式后制动器设计Microsoft Word 文档_第3页
轻型车鼓式后制动器设计Microsoft Word 文档_第4页
轻型车鼓式后制动器设计Microsoft Word 文档_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、装备制造学院毕业设计任务书学生姓名: 张斌 专 业:工程机械运用与维护设计(论文)题目:轻型车鼓式后制动器设计设计方案及参数:主要技术参数:整车空载质量:1672;(空载时轴荷分配:前轴60%,后轴40%); 满载质量:4180;(满载时的轴荷分配:前轴52%,后轴48%); 质心高度:0.7m(空) 0.85m(满) 轴距:3.1m 轮胎规格:245/65R15 同步附着系数选择:0.65要求:满载下,30KM/h初速,制动距离7m设计内容1、根据给定的设计参数,选择设计方案,计算并确定零部件各参数绘出驱动桥的装配图及典型零件图。2、工程绘图量一般不少于折合成图幅为A0号的图纸3张,其中手工

2、绘图不少于1张。3、查阅相关参考文献15篇以上。翻译与课题有关的2万印刷字符的外文资料,约5000个汉字。4、撰写设计说明书一份,正文字数不少于2万字。 指 导 教 师 系、部 主任 教 学 院 长 目 录中文摘要I英文摘要II第1章 鼓式制动器结构形式及选择11.1鼓式制动器的形式结构11.2 鼓式制动器按蹄的属性分类21.2.1 领从蹄式制动器21.2.2 双领蹄式制动器61.2.3 双向双领蹄式制动器71.2.4 单向増力式制动器91.2.5 双向増力式制动器9第2章 制动系的主要参数及其选择132.1 制动力与制动力分配系数132.2 同步附着系数182.3制动器最大制动力矩202.4

3、 鼓式制动器的结构参数与摩擦系数212.4.1 制动鼓内径D222.4.2 摩擦衬片宽度b和包角222.4.3 摩擦衬片起始角242.4.4 制动器中心到张开力P作用线的距离a242.4.5 制动蹄支承点位置坐标k和c242.4.6 衬片摩擦系数f24第3章 制动器的设计计算253.1浮式领从蹄制动器(平行支座面) 制动器因素计算253.2制动驱动机构的设计计算273.2.1所需制动力计算273.2.2制动踏板力验算283.2.3 确定制动轮缸直径293.2.4轮缸的工作容积293.2.5 制动器所能产生的制动力计算303.3制动蹄片上的制动力矩313.4制动蹄上的压力分布规律353.5 摩擦

4、衬片的磨损特性计算373.6 制动器的热容量和温升的核算403.7行车制动效能计算413.8 驻车制动的计算42第4章 制动器主要零件的结构设计454.1制动鼓454.2 制动蹄464.3 制动底板464.4 制动蹄的支承474.5 制动轮缸474.6 摩擦材料474.7 制动器间隙48结 论50致 谢51参考文献52附 录 153附 录 254 河北工程大学毕业设计摘 要鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动蹄位于制动轮内侧,刹车时制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制

5、动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄鼓式制动器。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求,首先根据给定车型的整车参数和技术要求,确定制动器的结构形式及、制动器主要参数,然后计算制动器的制动力矩、制动蹄上的压力分布、蹄片变形规律、制动效能因数、制动减速度、耐磨损特性、制动温升等,并在此基础上进行制动器主要零部件的结构设计。最后,完成装配图和零件图的绘制。关键词:鼓式制动器,制动力矩,制动效能因数,制动减速度,制动温升ABSTRACTDrum brake, also kno

6、wn as block-type brake, drum brakes, now within the mainstream style sheets, and its brake shoes located inside the brake wheel, brake brake blocks out when open, the inside wheel friction brake, to achieve the purpose of the brakes.In the vehicle braking system has a very important role, failure wi

7、ll result in disaster if serious consequences. The main parts of the braking system is the brake, in the modern car is still widely used in high performance brake shoe - brake drum. The design of the friction drum brakes were related to the design and calculation. In the design process, based on the

8、 actual product, according to our current brake factory general new product development process, and theoretical design requirements, the first model of the vehicle according to the given parameter and the technical requirements, determine the brake structure and, brake main parameters, and then cal

9、culate the braking torque brake, brake shoes on the pressure distribution, deformation shoe, brake effectiveness factor, braking deceleration, wear characteristics, brake temperature, etc., and in this brake on the basis of the structural design of major components. Finally, assembly drawings and pa

10、rts to complete mapping.KEY WORDS:drum brake, braking torque, brake efficiency factor, braking deceleration, brake temperature rising21第1章 鼓式制动器结构形式及选择除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄

11、,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内张型鼓式制动器通常简称为鼓式制动

12、器,而通常所说的鼓式制动器即是指这种内张型鼓式制动器。1.1鼓式制动器的形式结构鼓式制动器可按其制动蹄的受力情况分类(见图1.1),它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。 图 1.1 鼓式制动器简图(a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式); (d)双向双领蹄式;(e)单向增力式;(f)双向増力式制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。1.2 鼓式制动器按蹄的属性分类1.2.1 领从蹄式制动

13、器 如图1.1(a),(b)所示,若图上的旋转箭头代表汽车前进时的制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向改变,变为反向旋转,随之领蹄与从蹄也就相互对调。这种当制动鼓正,反向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器,称为领从蹄式制动器。由图1.1(a),(b)可见,领蹄所受的摩擦力矩使蹄压得更紧,即摩擦力矩具有“增势”作用,故称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。图 1.2 PERROT公司的S凸轮制动

14、器图 1.3 俄KamA3汽车的S凸轮式车轮制动器1 制动蹄;2凸轮;3制动底板;4调整臂;5凸轮支座及制动气室;6滚轮对于两蹄的张开力的领从蹄式制动器结构,如图1.1(b)所示,两蹄压紧制动鼓的法向反力应相等。但当制动鼓旋转并制动时,领蹄由于摩擦力矩的“增势”作用,使其进一步压紧制动鼓使其所受的法向反力加大;从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减少。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值要由车轮轮毂承受。这种制动时两蹄法向反力不能相互平衡的制动器称为非平衡式制动器。液压或锲块驱动的领从蹄式制动器均为非平衡式结构,也叫简单非平衡式制动器。非平衡式制动器对轮毂轴承造

15、成附加径向载荷,而且领蹄摩擦衬片表面的单位压力大于从蹄的,磨损较严重。为使衬片寿命均匀。可将从蹄的摩擦衬片包角适当地减小。对于如图1.1(a)所示具有定心凸轮张开装置的领从蹄制动器,在制动时,凸轮机构保证了两蹄等位移,因此作用于两蹄上的法向反力和由此产生的制动力矩应分别相等,而作用于两蹄的张开力,则不等,并且必然有。由于两蹄的法向反力在制动鼓正,反两个方向旋转并制动时均成立,因此这种结构的特性是双向的,实际上也是平衡式的。其缺点是驱动凸轮的力要大而效率却相对较低,约为0.60.8。因为凸轮要求气压驱动,因此这种结构仅使用于总质量大于或等于10t的货车和客车上。领从蹄式制动器的两个蹄常有固定的支

16、点。张开装置有凸轮式(见图1.1(a),图1.2,图1.3),锲块式(图1.4),曲柄式(参见图1.10)和具有两个或四个等直径活塞的制动轮缸式的(见图1.1(b),图1.5,图1.6)。后者可保证作用在两蹄上的张开力相等并用液压驱动,而凸轮式,锲块式和曲柄式等张开装置则用气压驱动。当张开装置中的制动凸轮和制动锲块都是浮动的时,也能保证两蹄张开力相等,这时的凸轮称为平衡凸轮。也有非平衡式的制动凸轮,其中心是固定的,不能浮动,所以不能保证作用在两蹄上的张开力相等。图 1.4 锲块式张开装置的车轮制动器 1 制动蹄;2制动底座;3制动气室;4 锲块;5 滚轮;6 柱塞;7 当块;8 棘爪; 9 调

17、整螺钉;10 调整套筒 图1.5制动轮缸具有两个等直径活塞的车轮制动器 图 1.6制动轮缸有四个直径活塞的车轮制动器1 活塞; 2 活塞支承圈; 3 密封圈;4 支承; 1 制动蹄; 2 制动底板; 3制动器间隙调5 制动底板;6 制动蹄;7 支承销; 凸轮;4偏心支承销9 制动蹄定位销;10 驻车制动传动装置 领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作中,重型载货汽车前,后轮以及轿车后轮制动器。根据支承结构及调整方法的不同,领从蹄鼓式液压驱动的车轮制动器又有不同的结构方案,如图1.7所示 图

18、1.7 领从蹄式制动器的结构方案(液压驱动)(a)一般形式;(b)单固定支点;轮缸上调整(c)双固定支点;偏心轴调整;(d)浮动蹄片;支点端调整 1.2.2 双领蹄式制动器当汽车前进时,若两制动蹄均为领蹄的制动器,称为双领蹄式制动器。但这种制动器在汽车倒车时,两制动蹄又都变为从蹄,因此,它又称为单向为单向双领蹄式制动器。如图1.1(c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄,制动轮缸等机件在制动底板上是以制动底板中心为对称布置的,因此两蹄对鼓作用的合力恰好相互平衡,故属于平衡式制动器。单向双领蹄式制动器根据其调整方法的不同,又有多种结构方案,如图9所示。 图 1.8 单向双领蹄式

19、制动器的结构方案(液压驱动)(a)一般形式;(b)偏心调整;(c)轮缸上调整;(d)浮式蹄片,轮缸支座调整端;(e)浮动蹄片,轮缸偏心机构调整 双领蹄式制动器有高的正向制动效能,但倒车时变为双从蹄式,使制动效能大减。中级轿车的前制动器常用这种形式,这是由于这类汽车前进制动时,前轴的轴荷及附着力大于后轴,而倒车时则相反,采用这这种结构作为前轮制动器并与领从蹄式后轮制动器相匹配,则可较容易地获得所希望的前,后制动力分配()并使前,后轮制动器的许多零件有相同的尺寸。它不用于后轮还由于有两个互相成中心对称的制动轮缸,难于附加驻车制动驱动机构。1.2.3 双向双领蹄式制动器当制动鼓正向和反向旋转时两制动

20、蹄均为领蹄的制动器,称为双向双领蹄式制动器。如1.1(d)及图1.9,图1.10所示。其两蹄的两端均为浮式支承,不是支承在支承销上,而是支承在两个活塞制动轮缸的支座上(图1.1(d),图1.9)或其他张开装置的支座上(图1.10,图1.11)。当制动时,油压使两个制动轮缸的两侧活塞(图1.9)或其他张开装置的两侧(图1.10,图1.11)均向外移动,使两制动蹄均压紧在制动鼓的内圆柱面上。图 1.9 双向双领蹄式鼓式制动器的结构方案(液压驱动)(a)一般形式;(b)偏心机构调整;(c)轮缸上调整制动鼓靠摩擦力带动两制动蹄转过一小角度,使两制动蹄的转动方向均与制动鼓的转向方向一致;当制动鼓反向旋转

21、时,其过程类同但方向相反。因此,制动鼓在正向,反向旋转时两制动蹄均为领蹄,故称双向双领蹄式制动器。它也属于平衡式制动器。由于这种这种制动器在汽车前进和倒退时的性能不变,故广泛用于中,轻型载货汽车和部分轿车的前,后轮。但用作后轮制动器时,需另设中央制动器。图 1.10 LCCAS公司的曲柄机构制动器图 1.11 PERROT的双锲式制动器1.2.4 单向増力式制动器 如图1.1(e)所示,两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。当汽车前进时,第一制动蹄被单活塞的制动轮缸推压到制动鼓的内圆柱面上。制动鼓靠摩擦力带动第一制动蹄转过一小角度,进而经顶杆推动第二制动蹄也压向制动

22、鼓的工作表面并支承在其上端的支承销上。显然,第一制动蹄为一增势的领蹄,而第二制动蹄不仅是一个增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一制动蹄的推力P大很多,使第二制动蹄的制动力矩比第一制动蹄的制动力矩大2-3倍之多。由于制动时两蹄的法向反力不能相互平衡,因此属于一种非平衡式制动器。 虽然这种制动器在汽车前进制动时,其制动效能很高,且高于前述各种制动器,但在倒车制动时,其制动效能却是最低的。因此,仅用于少数轻,中型货车和轿车上作前轮制动器。1.2.5 双向増力式制动器 如图1.1(f)所示,将单向増力式制动器的单活塞制动轮缸换以双活塞制动轮缸,其上端的支承销也作为两蹄可共用的,则成为双

23、向増力式制动器。对双向増力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为増力式制动器。只是当制动鼓正向旋转时,前制动蹄为第一制动蹄,后制动蹄为第二制动蹄;而反向旋转时,第一制动蹄与第二制动蹄正好对调。第一制动蹄是增势蹄,第二制动蹄不仅是增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一蹄或第二蹄的推力大很多。但制动时作用于第二蹄上端的制动轮缸推力起着减小第二蹄与支承销间压紧力的作用。双向増力式制动器也是属于非平衡式制动器。 图1.12给出了双向増力式制动器(浮动支承)的几种结构方案,图14给出了双向増力式制动器(固定支点)另外几种结构方案。图 1.12 双向増力式制动器(浮动支承)的

24、结构方案(a)一般形式;(b)支承上调整;(c)轮缸上调整图 1.13 双向増力式制动器(固定支点)的结构方案(a)一般形式;(b)浮动调整;(c)中心调整 双向増力式制动器在高级轿车上用得较多,而且往往将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压通过制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过拉绳及杠杆等操纵。另外,它也广泛用于汽车中央制动器,因为驻车制动要求制动器正,反向的制动效能都很高,而且驻车制动若不用于应急制动时不会产生高温,因而热衰退问题并不突出。 上述制动器的特点是用制动器效能,效能稳定性和摩擦衬片磨损均匀程度来评价。増力式制动器效能最高,双

25、领蹄式次之,领蹄式更次之,还有一种双从蹄式制动蹄的效能最低,故极少采用。而就工作稳定性来看,名次排列正好与效能排列相反,双从蹄式最好,増力式最差。摩擦系数的变化是影响制动器工作效能稳定性的主要因素。 还应指出,制动器的效能不仅与制动器的结构形式,结构参数和摩擦系数有关,也受到其他有关因素的影响。例如制动蹄摩擦衬片与制动鼓仅在衬片的中部接触时输出的制动力矩最小;而在衬片的两端接触时,输出的制动力矩就大。制动器的效能常以制动器效能因数或简称为制动器因数BF(brake factor)来衡量,制动器因数BF可以用下式表达: BF=(f+f)/P 式(1.1) 式中 f,f: 制动器摩擦副间的摩擦力,

26、见图1.1; ,: 制动器摩擦副间的法向力,对平衡式鼓式制动器:= f制动器摩擦副的摩擦系数; P鼓式制动器的蹄端作用力,见图1.1。图 1.14 制动器因数BF与摩擦系数f的关系曲线1増力式制动器;2双领蹄式制动器;3领从蹄式制动器;4盘式制动器;5双从蹄式制动器 基本尺寸比例相同的各种内张型鼓式制动器的制动因数BF与摩擦系数f之间的关系如图15所示。BF值大,即制动效能好。在制动过程中由于热衰退,摩擦系数是变化的,因此摩擦系数变化时。BF值变化小的,制动效能稳定性就好。 制动器因数值愈大,摩擦副的接触情况对制动效能的影响也就愈大。所以,对制动器的正确调整,对高效能的制动器尤为重要。 结合本

27、次课题研究的对象(轻型车鼓式后制动器),得出以下结论:虽然领从蹄式制动器的效能及稳定性在各式制动器中均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,易于调整蹄片与制动鼓之间的间隙。故仍广泛用作载货汽车的前、后轮以及轿车的后轮制动器。根据设计车型的特点及制动要求,并考虑到使结构简单,造价较低,也便于附装驻车制动机构等因数,选用领从蹄式制动器,其支撑结构型式为浮式平行支撑。第2章 制动过程的动力学参数的计算2.1制动过程车轮所受的制动力汽车受到与行驶方向相反的外力时,才能从一定的速度制动到较小的车速或直至停车。这个外力只能由地面和空气提供。但由

28、于空气阻力相对较小,所以实际外力主要是由地面提供的,称之为地面制动力。地面制动力越大,制动距离也越短,所以地面制动力对汽车制动性具有决定性影响。下面分析一个车轮在制动时的受力情况。(1)地面制动力假设滚动阻力偶矩、车轮惯性力和惯性力偶矩均可忽略图,则车轮在平直良好路面上制动时的受力情况如图2-1所示。图2-1 车轮制动时受力简图是车轮制动器中摩擦片与制动鼓或盘相对滑动时的摩擦力矩单位为;是地面制动力,单位为N;为车轮垂直载荷、为车轴对车轮的推力、为地面对车轮的法向反作用力,它们的单位均为N。显然,从力矩平衡得到 (2-1)式中,为车轮的有效半径(m)。地面制动力是使汽车制动而减速行驶的外力,但

29、地面制动力取决于两个摩擦副的摩擦力:一个是制动器内制动摩擦片与制动鼓或制动盘间的摩擦力,一个是轮胎与地面间的摩擦力附着力。(2)制动器制动力在轮胎周缘为了克服制动器摩擦力矩所需的力称为制动器制动力,以符号表示,显然 (2-2)式中:是车轮制动器摩擦副的摩擦力矩。 制动器制动力是由制动器结构参数所决定的。它与制动器的型式、结构尺寸、摩擦副的而摩擦系数和车轮半径以及踏板力有关。图2-2给出了地面制动力、车轮制动力及附着力三者之间的关系。当踩下制动踏板时,首先消除制动系间隙后,制动器制动力开始增加。开始时踏板力较小,制动器制动力也较小,地面制动力足以克服制动器制动力,而使得车轮滚动。此时,=,且随踏

30、板力增加成线性增加。图2-2 地面制动力、车轮制动力及附着力之间的关系但是地面制动力是地面摩擦阻力的约束反力,其值不能大于地面附着力或最大地面制动力,即 (2-3) (2-4)当制动踏板力上升到一定值时,地面制动力达到最大地面制动力=,车轮开始抱死不转而出现拖滑现象。随着制动踏板力以及制动管路压力的继续升高,制动器制动力继续增加,直至踏板最大行程,但是地面制动力不再增加。上述分析表明,汽车地面制动力取决于制动器制动力,同时又受到地面附着力的闲置。只有当制动器制动力足够大,而且地面又能够提供足够大的附着力,才能获得足够大的地面制动力。(3)地面对前、后车轮的法向反作用力图2-3所示为,忽略汽车的滚动阻力偶和旋转质量减速时的惯性阻力偶矩,汽车在水平路面上制动时的受力情况。图 2-3 制动时的汽车受力图因为制动时车速较低,空气阻力可忽略不计,则分别对汽车前后轮接地点取矩,整理得前、后轮的地面法向反作用力、为 (2-5)式中:,为制动强度,汽车所受重力; 汽车轴距;汽车质心离前轴距离;汽车质心离后轴距离; 为汽车质心高度(满载时=920mm);重力加速度;若在附着系数为的路面上制动,前、后轮都抱死(无论是同时抱死或分别先后抱死),此时。地面作用于前、后轮的法向反作用力为 (2-7)式(2-6)、(2-7)均为直线方程,由上式可见,当制动强度或附着系数改变时,前后轴车轮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论