




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平 面 动 点 的 轨 迹 说 课 稿 一、教学目标(一)知识与技能、进一步熟练掌握求动点轨迹方程的基本方法。、体会数学实验的直观性、有效性,提高几何画板的操作能力。(二)过程与方法、培养学生观察能力、抽象概括能力及创新能力。、体会感性到理性、形象到抽象的思维过程。、强化类比、联想的方法,领会方程、数形结合等思想。(三)情感态度价值观、感受动点轨迹的动态美、和谐美、对称美 、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气二、教学重点与难点教学重点:运用类比、联想的方法探究不同条件下的轨迹教学难点:图形、文字、符号三种语言之间的过渡三、教学方法和手段【
2、教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。四、教学过程n 1、创设情景,引入课题生活中我们
3、四处可见轨迹曲线的影子【演示】这是美丽的城市夜景图【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多【演示】建筑中也有许多美丽的轨迹曲线设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。n 2、激发情感,引导探索靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。第一步:让学生借助画板动手验证轨迹第二步:要求学生
4、求出轨迹方程法一:设,则由得,化简得法二:设,由得化简得法三:设, 由点到定点的距离等于定长,根据圆的定义得;第三步:复习求轨迹方程的一般步骤(1)建立适当的坐标系(2)设动点的坐标m(x,y)(3)列出动点相关的约束条件p(m)(4)将其坐标化并化简,f(x,y)=0(5)证明其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。3、主动发现、主动发展由上述例1可
5、知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究m不是中点时的轨迹。 第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。第二步:分解动作,向学生提出3个问题:问题1:当m位置不同时,线段bm与ma的大小关系如何?问题2、体现bm与ma大小关系还有什么常见的形式?问题3、你能类比例1把这种数量关系表达出来吗?第三步:展示学生归纳、概括出来的数学问题1、线段ab
6、的长为2a,两个端点b和a分别在x轴和y轴上滑动,点m为ab上的点,满足,求点m的轨迹方程。2、线段ab的长为2a,两个端点b和a分别在x轴和y轴上滑动,点m为ab上的点,满足,求点m的轨迹方程。3、线段ab的长为2a,两个端点b和a分别在x轴和y轴上滑动,点m为ab上的点,满足,求点m的轨迹方程。(说明是什么轨迹)第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成4、合作探究、实现创新改变a、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定a点,运动b点)学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。5、布置作业、实现拓展1、把上述同
7、学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。2、已知a(4,0),点b是圆上一动点,ab中垂线与直线ob相交于点p,求点p的轨迹方程。3、已知a(2,0),点b是圆上一动点,ab中垂线与直线ob相交于点p,求点p的轨迹方程。4若把上述问题中垂线改为一般的垂线与直线ob相交于点p,请同学们利用画板验证点p 的轨迹。以下是学生课后探究得到的一些轨迹图形课后有学生问,如果x轴和y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是
8、一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。以下是x轴和y轴不垂直时的轨迹图形五、教学设计说明:(一)、教材平面动点的轨迹是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。(二)、校情、学情校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。 学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作
9、的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。(三)学法观察、实验、交流、合作、类比、联想、归纳、总结(四)、教学过程1、创设情景,引入课题2、激发情感,引导探索由梯子滑落问题抽象、概括出数学问题第一步:让学生借助画板动手验证轨迹第二步:要求学生求出轨迹方程第三步:复习求轨迹方程的一般步骤3、主动发现、主动发展探究m不是中点时的轨迹第一步:利用网络平台展示学生得到的轨迹第二步:分解动作,向学生提出3个问题:第三步:展示学生归纳、概括出
10、来的数学问题4、合作探究、实现创新改变a、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定a点,运动b点)学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。5、布置作业、实现拓展(五)、教学特色:借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。本节课学生精神饱满、兴趣浓厚、合作积极,
11、与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。课题:5.4平面向量的坐标运算(第一课时)教材:人教版全日制普通高级中学教科书(必修)第一册(下)授课教师: 单位: 教材分析与教法设计教学目标知识目标1、理解平面向量的坐标概念(1)在巩固平面向量基本定理的基础上理解平面向量的坐标概念;(2)会写出平面直角坐标系内给定向量的坐标.2、掌握平面向量的坐标运算(1)能正确理解向量加、减法的坐标运算法则;(2)能熟练进行向量的坐标运算;(3)掌握向量坐标与表示它的有向线段的起点坐标、终点坐标之间的
12、关系.能力要求1、通过平面向量坐标表示及坐标运算法则的推导培养学生演绎、归纳、猜想的能力;2、通过对坐标平面内点和向量的类比,培养学生类比推理的能力; 3、借助数学图形解决问题,提高学生用数形结合的思想方法解决问题的能力.情感态度设置问题情境让学生认识到课堂知识与实际生活的联系,感受数学来源于生活并服务于生活,体会客观世界中事物与事物之间普遍联系的辩证唯物观主义观点.重点平面向量的坐标运算.难点理解向量坐标的意义.方法引导发现、合作探究.教具多媒体课件、实物投影仪、三角尺.教学过程环节具体内容及形式双边活动设计意图复习回顾判断题1、单位向量都相等; ( 假 ) 2、坐标平面上的x轴和y轴都是向
13、量. ( 假 )通过提问的方式让学生对命题作出判断;教师从学生活动出发,进行评价、拓展,为新课的讲解作铺垫.oxijy复习回顾: 复习向量定义,引出x 轴y轴正方向上的单位向量i和j.3、如果e1 、e2 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数x,y,使a = x e1 + y e2 . ( 真 )通过第3小题复习平面向量基本定理, 为下一步将基底特殊化引出新课做准备.创设问题情境通过学生熟知的足球运动来创设问题情境,引入新课,并且建立数学与其它学科的联系.学生体会数学与现实生活的联系,并通过教师引导,体会特殊化的思想.激发学生的学习兴趣,提高学习效率
14、,在知识的迁移中进行创造性的学习,达到传授知识与培养学生能力融为一体的目的.师生共同探究及应用平面向量的坐标表示问题一:平面直角坐标系内,每个点可以用一对实数来表示,向量可以吗?解决途径:以向量i、j为基底,利用平面向量基本定理构造平行四边形,如图:oxyija 结论:若a = xi+ yj,则a =(x,y)叫做向量的坐标表示. 经历前两个环节的铺垫后,教师引导学生恰当的选取基底,完成基底特殊化的过程.教师通过多媒体课件演示,使学生直观理解平面向量的坐标概念,明确求向量坐标的思路.设置探究式教学,让学生经历知识的形成、发展、应用的过程,从而达到对知识的深刻理解与灵活应用,充分体会数学探索的乐
15、趣.以向量b为例讲解本题,可以让学生体会向量的坐标与点的坐标一样,有正负之分.在学生掌握课本例题的基础上进行挖掘、引申,探究新知,使得前后知识衔接自然.在教学中渗透类比和特殊化的数学思想,形成新的知识结构体系,为下一步突破教学难点做准备.应用一、初步运用定义求特殊向量的坐标.i=(1,0),j=(0,1),0=(0,0)应用二: (课本p111例1).例1、 用基底i、j分别表示向量a、b、c、d,并求它们的坐标.123401234xyoabcd变式探究:将例1中向量d的方向取反向得到向量e,分析b、e两向量的关系后进行探究.探究一:相等向量的坐标有关系吗?结论:相等向量的坐标也相等,体现向量
16、与其坐标的对应关系.探究二:将表示向量的有向线段的起点放在坐标原点后有何结论呢?结论:此时向量坐标就由这条有向线段的终点坐标唯一确定了. 学生独立完成,进一步体会特殊化思想.师生共同探究,教师板书过程.教师重点以向量b为例讲解本题,引导学生利用平面向量的坐标表示求出向量b的坐标,并提醒学生注意坐标符号.学生观察出向量b、e两向量大小相等,方向相同,应该是相等向量.教师提问:向量在坐标平面内任意平移而坐标不变,那么将其起点放在什么位置更有利于研究呢?教师利用多媒体课件进行动画演示,学生直接参与探究的过程,从亲身体验中获得深刻的认识.师生共同探究及应用平面向量的坐标运算问题二:若已知a =(1,3
17、),b =(5,1),如何求a b 、a b的坐标呢?(由特殊到一般,探究向量加减的坐标运算法则)法则:若a =(x1 ,y1),b =(x2 ,y2),则:a b = (x1x2 ,y1y2 ),a b = (x1x2 ,y1y2 )应用三:课本p112例2 及p114练习1.探究三:例一中向量a的坐标与它对应的有向线段的起点、终点坐标有何关系?bcoxyaab(从具体例子寻找规律) 由图可知,a = c b 结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.探究四:一个向量平移后坐标不变,但起点坐标和终点坐标发生了变化,这是否矛盾呢?借助探究二的探究思路,利用向量坐标
18、表示的推导过程来组织教学.结论:向量的坐标与表示它的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.对具体的两个向量,教师启发引导学生分析规律,通过猜想、验证得出向量的坐标运算法则.例2以学生回答为主,教师板书过程;练习学生笔答,通过实物投影反馈.教师利用多媒体课件演示引导学生把任意向量用起点在原点的向量来表示.寻找各知识点的联系,挖掘问题实质.让学生经历主动观察、大胆猜想、积极验证,顺利得出向量的坐标运算法则,突出重点.同时培养学生的观察能力、推理能力、逻辑思维能力.让学生熟练运算法则的应用,体会向量坐标运算的优势:思路明确,过程简捷;强调步骤书写,发现问题及时解释说明.体现了
19、向量坐标的意义,通过提出矛盾、回顾旧知、推理验证,对难点层层突破.应用四:课本p114练习2.应用五:以表格形式对练习2 引申训练 起点a终点b向量ab( 2,3 )( 1,1 )( 3 , 4 )( 2 , 7 )应用六:课本p113例三.变式训练:将例三中平行四边形abcd这一条件去掉,改为求点d,使这四个点构成平行四边形.(教学中可根据时间情况进行讲解或作为课后思考题)学生口答,教师进行评价、拓展.教师倡导学生积极思考,从不同角度解决本题,体会难易差别.熟练向量的坐标与表示它的有向线段的起点坐标、终点坐标之间的关系.例三是对本节内容综合训练,培养学生善于思考和严谨的学习态度,并对新知识进行深层次的理解和应用.归纳总结强调本节课的重点内容,为下节课的学习做简要铺垫.在教师提问的基础上,让学生自己进行归纳总结,教师加以补充. 帮助学生把所学知识纳入知识体系,形成良好的认知结构,有益于学生对知识的巩固、理解和掌握.作业课本第114页第1、2、3题板书设计方案一:54平面向量的坐标运算(一)一、平面向量的坐标表示1、定义2、特殊向量的坐标表示3、相等向量的坐标也相等 4、向量oa的坐标表示二、平面向量的坐标运算1、向量的坐标运算法则2、向量ab的坐标与点a、点b的坐标的关系三、例题例1例2例3方案二:一、平面向量的坐标表示1、定义2、特殊向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江省建筑安全员《B证》考试题库
- 《公共政策学》题库及答案 2
- 西安信息职业大学《商业伦理》2023-2024学年第二学期期末试卷
- 2024-2025学年山东省聊城市高唐县第二中学高三上学期12月月考历史试卷
- 武汉船舶职业技术学院《R语言与数据可视化》2023-2024学年第二学期期末试卷
- 湖南财经工业职业技术学院《斜视弱视学》2023-2024学年第二学期期末试卷
- 2025青海省安全员《C证》考试题库
- 潍坊理工学院《经济统计学》2023-2024学年第二学期期末试卷
- 临夏现代职业学院《数字信号处理A》2023-2024学年第二学期期末试卷
- 平顶山学院《安全类专业写作》2023-2024学年第二学期期末试卷
- Photoshop+2024学习手册:第1课认识与操作基础
- 《不同血流限制训练方案对膝关节损伤运动员下肢功能的影响》
- 药品经营企业(批发和零售)面临的风险点和应对措施
- 基本公共卫生服务项目培训
- 北师大版(2024新版)七年级上册数学期末模拟测试卷(含答案)
- 无人机组装与调试 课件 项目1任务1 多旋翼无人机飞行平台组装调试
- 消防行业岗位培训与校企联合方案
- 中国通 用技术集团招聘笔试题库
- 自动化部门的发展规划
- 2024年中国天然橡胶产业数据分析简报-农小蜂
- 《S公司客户开发与维护策略改进探究》开题报告10000字
评论
0/150
提交评论