电大【经济数学基础】综合练习及参考答案_第1页
电大【经济数学基础】综合练习及参考答案_第2页
电大【经济数学基础】综合练习及参考答案_第3页
电大【经济数学基础】综合练习及参考答案_第4页
电大【经济数学基础】综合练习及参考答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2441【经济数学基础】综合练习及参考答案经济数学基础综合练习及参考答案第三部 线性代数一、单项选择题1设a为矩阵,b为矩阵,则下列运算中( )可以进行. aab babt ca+b dbat 2设为同阶可逆矩阵,则下列等式成立的是( )a. b. c. d. 3设为同阶可逆方阵,则下列说法正确的是( )a. 若ab = i,则必有a = i或b = i b.c. 秩秩秩 d. 4设均为n阶方阵,在下列情况下能推出a是单位矩阵的是( ) a b c d5设是可逆矩阵,且,则( ).a. b. c. d. 6设,是单位矩阵,则( ) a b c d7设下面矩阵a, b, c能进行乘法运算,那么(

2、 )成立.aab = ac,a 0,则b = c bab = ac,a可逆,则b = c ca可逆,则ab = ba dab = 0,则有a = 0,或b = 08设是阶可逆矩阵,是不为0的常数,则( ) a. b. c. d. 9设,则r(a) =( ) a4 b3 c2 d1 10设线性方程组的增广矩阵通过初等行变换化为,则此线性方程组的一般解中自由未知量的个数为( ) a1 b2 c3 d4 11线性方程组 解的情况是( )a. 无解 b. 只有0解 c. 有唯一解 d. 有无穷多解 12若线性方程组的增广矩阵为,则当()时线性方程组无解a b0 c1 d213 线性方程组只有零解,则(

3、 ).a. 有唯一解 b. 可能无解 c. 有无穷多解 d. 无解14设线性方程组ax=b中,若r(a, b) = 4,r(a) = 3,则该线性方程组( ) a有唯一解 b无解 c有非零解 d有无穷多解15设线性方程组有唯一解,则相应的齐次方程组( ) a无解 b有非零解 c只有零解 d解不能确定二、填空题1两个矩阵既可相加又可相乘的充分必要条件是 .2计算矩阵乘积=3若矩阵a = ,b = ,则atb=4设为矩阵,为矩阵,若ab与ba都可进行运算,则有关系式 5设,当 时,是对称矩阵.6当 时,矩阵可逆.7设为两个已知矩阵,且可逆,则方程的解 8设为阶可逆矩阵,则(a)= 9若矩阵a =,

4、则r(a) = 10若r(a, b) = 4,r(a) = 3,则线性方程组ax = b11若线性方程组有非零解,则12设齐次线性方程组,且秩(a) = r n,则其一般解中的自由未知量的个数等于 13齐次线性方程组的系数矩阵为则此方程组的一般解为 .14线性方程组的增广矩阵化成阶梯形矩阵后为则当 时,方程组有无穷多解.15若线性方程组有唯一解,则 . 三、计算题 1设矩阵,求2设矩阵 ,计算 3设矩阵a =,求 4设矩阵a =,求逆矩阵 5设矩阵 a =,b =,计算(ab)-1 6设矩阵 a =,b =,计算(ba)-1 7解矩阵方程8解矩阵方程. 9设线性方程组 讨论当a,b为何值时,方

5、程组无解,有唯一解,有无穷多解. 10设线性方程组 ,求其系数矩阵和增广矩阵的秩,并判断其解的情况. 11求下列线性方程组的一般解: 12求下列线性方程组的一般解: 13设齐次线性方程组问l取何值时方程组有非零解,并求一般解. 14当取何值时,线性方程组 有解?并求一般解.15已知线性方程组的增广矩阵经初等行变换化为问取何值时,方程组有解?当方程组有解时,求方程组的一般解. 四、证明题1试证:设a,b,ab均为n阶对称矩阵,则ab =ba2试证:设是n阶矩阵,若= 0,则3已知矩阵 ,且,试证是可逆矩阵,并求. 4. 设阶矩阵满足,证明是对称矩阵.5设a,b均为n阶对称矩阵,则abba也是对称

6、矩阵 试题答案一、 单项选择题1. a 2. b 3. d 4. d 5. c 6. d 7. b 8. c 9.d 10. a 11. a 12. a 13. b 14. b 15. c二、填空题1与是同阶矩阵 24 3 4 50 6 7 8 92 10无解 11-1 12n r 13 (其中是自由未知量) 14 15只有0解三、计算题1解 因为 = =所以 = 2解:= = = 3解 因为 (a i )= 所以 a-1 = 4解 因为(a i ) = 所以 a-1= 5解 因为ab = (ab i ) = 所以 (ab)-1= 6解 因为ba= (ba i )= 所以 (ba)-1= 7解

7、 因为 即 所以,x = 8解:因为 即 所以,x = 9解 因为 所以当且时,方程组无解; 当时,方程组有唯一解; 当且时,方程组有无穷多解. 10解 因为 所以 r(a) = 2,r() = 3. 又因为r(a) r(),所以方程组无解. 11解 因为系数矩阵 所以一般解为 (其中,是自由未知量) 12解 因为增广矩阵 所以一般解为 (其中是自由未知量) 13解 因为系数矩阵 a = 所以当l = 5时,方程组有非零解. 且一般解为 (其中是自由未知量) 14解 因为增广矩阵 所以当=0时,线性方程组有无穷多解,且一般解为: 是自由未知量 15解:当=3时,方程组有解. 当=3时, 一般解为, 其中, 为自由未知量. 四、证明题 1证 因为at = a,bt = b,(ab)t = ab 所以 ab =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论