版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、复习复习1、相似三角形的定义是什么?、相似三角形的定义是什么?答:答:三边对应成成比例,三三边对应成成比例,三个角对应相等的两个三角形个角对应相等的两个三角形叫做相似三角形叫做相似三角形 。2、判定两个三角形相似有哪些、判定两个三角形相似有哪些主要方法?主要方法?答:答:两角对应相等,两个三角形两角对应相等,两个三角形 相似相似两条边对应成比例且夹角相两条边对应成比例且夹角相 等,两三角形相似等,两三角形相似三边对应成比例,那么这两三边对应成比例,那么这两 个三角形相似个三角形相似直角三角形相似的判定定理直角三角形相似的判定定理若若cd为为rtabc斜边上的高则斜边上的高则rtabcrtacd
2、rtcbd若若debc(a型和型和x型)则型)则adeabc?e?a?d?c?b?e?a?d?c?b?a?d?c?b3、判定两个三角形相似除了上面三种主要方法、判定两个三角形相似除了上面三种主要方法外,还有没有其它方法可以识别两个三角形相似?外,还有没有其它方法可以识别两个三角形相似?4、相似三角形有哪些性质、相似三角形有哪些性质答:答: 1、对应角相等,对应边、对应角相等,对应边 ,2、相似三角形的对应边的比叫做相似三角形的对应边的比叫做_,一般用,一般用k表示表示3、对应角平分线、对应中线、对对应角平分线、对应中线、对应高线、对应周长的比都等应高线、对应周长的比都等于于 。4、相似三角形面
3、积的比等于、相似三角形面积的比等于 。例例2.在在abc中,中,ab=6,ac=8,在,在def中,中,de=4,df=3,要使,要使abc与与def相似,需添加相似,需添加的一个条件是的一个条件是 (写出一种情况即可)(写出一种情况即可)例例1.如图,用放大镜将图形放大,应该属于如图,用放大镜将图形放大,应该属于()()相似变换相似变换平移变换平移变换 对称变换对称变换旋转变换旋转变换范例讲解范例讲解例例3. 如图在如图在44的正方形方格中,的正方形方格中,abc和和def的的顶点都在长为顶点都在长为1的小正方形顶点上的小正方形顶点上 (1)填空:)填空:abc=_,bc=_ (2)判定)判
4、定abc与与def是否相似?是否相似?范例讲解范例讲解分析分析:(1)把问题转化到把问题转化到rt pbc中解决中解决(2)易知易知abc= def= 135 ,可用可用“两角对应相等两角对应相等,两三角形相似两三角形相似”或或“两边对应成比例且夹角相等,两三两边对应成比例且夹角相等,两三角形相似角形相似”两种方法;由本题现有条两种方法;由本题现有条件出发,显然用件出发,显然用”两边对应成比例且两边对应成比例且夹角相等两三角形相似夹角相等两三角形相似”去证明较为去证明较为简便。简便。pq例例3.如图在如图在44的正方形方格中,的正方形方格中,abc和和def的顶点都在长为的顶点都在长为1的小正
5、方形顶点上的小正方形顶点上 (1)填空:)填空:abc=_,bc=_ (2)判定)判定abc与与def是否相似?是否相似?解解:(1)abc=135 ,bc=_.(2) ab=2 , bc= , de= , ef=2, 又又abc= def=135 abcdef222222efbcdeab范例讲解范例讲解所有的等腰三角形都相似所有的等腰三角形都相似所有的直角三角形都相似所有的直角三角形都相似所有的等边三角形都相似所有的等边三角形都相似所有的等腰直角三角形都相似所有的等腰直角三角形都相似()()()()1.判断题:判断题:巩固训练巩固训练2如图所示如图所示,当当满足下列条件之一时,都可判定满足下
6、列条件之一时,都可判定adcacb , , 。?a?d?c?b acd=bacb=adcabadacabacacad2或 解解 :d、e分别为分别为ab、ac的中点的中点 debc,且,且 adeabc ade与与abc的相似比为的相似比为1:2 abcde3. abc中,中,ab的中点为的中点为d,ac的中点为的中点为e,连结连结de, 求求 ade与与 abc的相似比。的相似比。21acaeabad 解解: debc adeabc ad:db=2:3 ad:ab=2:5 即即ade与与abc的相似比为的相似比为2:5 ade与与abc的面积比为的面积比为4:25abcde4.如图,如图,d
7、ebc, ad:db=2:3, 求求 aed和和 abc 的面积比的面积比. 解解:aed=b, a=a aed abc(两角对(两角对 应相等,两三角形相似)应相等,两三角形相似) adbc=acdeabcde5. abc中,中,d、e分别是分别是ab、ac上的点,上的点, 且且aed= b,求证:,求证:adbc=acde bcdeacad拓展延伸拓展延伸 1.d为为abc中中ab边上一点,边上一点,acd= abc. 求证:求证:ac2=adab由已知两个三角形有二个角对应相等,由已知两个三角形有二个角对应相等,所以两三角形相似,本题可证。所以两三角形相似,本题可证。要证明要证明ac2=
8、adab,需要先将,需要先将乘积式改写为比例式乘积式改写为比例式 ,再证明再证明ac、ad、ab所在的两个所在的两个三角形相似。三角形相似。分析分析:?a?d?c?b拓展延伸拓展延伸 1.d为为abc中中ab边上一点,边上一点,acd= abc. 求证:求证:ac2=adab证明证明: acd= abc a = a abc acd ac2=adab?a?d?c?b2.已知,如图,在已知,如图,在abc中,中,d为为bc的中点,且的中点,且ad=ac,debc,de与与ab相交于点相交于点e,ec与与ad相交于点相交于点f,求证:求证:abcfcd; ?e?a?f?d?c?b证明:因为证明:因为
9、ad=acad=acadc=acd因为因为d为为bc的中点的中点,debceb=ecb=ecb abcfcd拓展延伸拓展延伸3.如图:已知如图:已知abccdb90,aca,bc=b,当,当bd与与a、b之间满足怎样的关系式时,之间满足怎样的关系式时,两三角形相似两三角形相似dabcab解解: 1d90当当 时,即当时,即当 时,时,abc cdb, 1d90当当 时,即当时,即当 时,时,abc bdc, 答:略答:略.bdbcbcacbdbbabdabbcacbdbaba22abbd2ababbd226如图,在如图,在abc中,中,c=90,p为为ab上上一点,且点一点,且点p不与点不与点
10、a重合,过点重合,过点p作作peab交交ac边于边于e点,点点,点e不与点不与点c重合,若重合,若ab=10,ac=8, 设设ap 的长为的长为x, 四边形四边形pecb的的周长为周长为y,求,求y与与x之间的函数关系式之间的函数关系式?x?e?a?p?c?b如图,如图,abdbabdb于点于点b?b?,cddbcddb于点于点d d,ab=4ab=4,cd=3cd=3,bd=8.bd=8.问:在问:在dbdb上是否存在上是否存在p p点,使以点,使以c c、d d、p p为为顶点的三角形与以顶点的三角形与以p p、b b、a a为顶点的三角形为顶点的三角形相似?如果存在,计算出点相似?如果存
11、在,计算出点p p的位置;如果的位置;如果不存在,请说明理由。不存在,请说明理由。348adcb如图,如图,dc=3,db=8,若点若点p是是db上一动点上一动点,连接连接cp 过点过点p作作pecp,交射线,交射线ba于点于点e,设设dp=x,be=y,求求y关于关于x的函数关系式的函数关系式.38adcbepxycpe能否成为等腰三角形?如果能,能否成为等腰三角形?如果能,求出求出dp的长,如果不能,请说明理由。的长,如果不能,请说明理由。38adcbep四边形四边形cdbe能否构成矩形?如果能,求能否构成矩形?如果能,求出出dp的长;如果不能,请说明理由;的长;如果不能,请说明理由;在上
12、图中,连结在上图中,连结ce,当点当点p运动到何处时运动到何处时, cdp cpe 38adcbep当点当点p运动到何处时四边形运动到何处时四边形cdbe的的面积最大?面积最大?如图如图,在线段在线段ba上任取一上任取一p,连结,连结pc,过过p作作pepc,与线段,与线段db交于点交于点e,(1)试确定)试确定ap=2.5时点时点e的位置;的位置;(2)若设)若设ap=x,be=y,试写出,试写出y关于自关于自变量变量x的函数关系式,并求出自变量的函数关系式,并求出自变量x的取的取值范围值范围.438adcbpef等腰等腰abc中,中,ab=ac=8。bac=120,p为为bc的中点,小慧拿
13、着含的中点,小慧拿着含30角的透明三角板,使角的透明三角板,使30角的顶角的顶点落在点点落在点p,三角板绕点,三角板绕点p旋转。旋转。abc(1)如图,三角板的两边分)如图,三角板的两边分别与别与ab、ac交于交于e、f 时,时,求证:求证:bpecfppef如图,在如图,在abc中中ab=ac=2,a=90,o为为bc的中点,动点的中点,动点e在在ba边上移动,边上移动,动点动点f在在ac边上移动。边上移动。(1)点点e,f在移动过程中,在移动过程中, eof能否成为能否成为eof=45 的等腰三角形?若能,请指出的等腰三角形?若能,请指出eof为等腰三角形时动点为等腰三角形时动点e,f的位置。若的位置。若不能,请说明理由。不能,请说明理由。acboef45 abcde在在abc中,中,bac=90,ab=ac=2,点,点d、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可使用合同with版权内容、使用范围等详细条款
- 2024年度新能源车辆采购合同:公共交通公司新能源汽车采购2篇
- 2024年度联合营销与推广合同
- 2024年度电梯设备维护及安装合同
- 2024年度盘锦公司技术开发合同
- 2024年度海上旅游业务合同
- 2024年度茶楼租赁期内茶叶供应与质量控制合同
- 2024年度企业环保治理与污染减排合同
- 2024年度土地使用权转让合同标的及服务内容详细描述
- 2024年度井筒建设贷款合同:水资源开发资金借贷
- 【2023高血压患者服药依从性研究(论文)2800字】
- 村卫生室2023年度绩效考核评分细则(基本公共卫生服务)
- 智慧校园建设三年规划
- 十字路口交通灯PLC交通灯课程设计报告
- 阴阳五行学说 PowerPoint 演示文稿 全面版【PPT课件】
- 测定总糖原始记录
- 病理组织的固定-骨质脱钙
- 北京科技大学EMC-VNX5300实施文档
- 高一女生青春期教育讲座
- 护士执业注册健康体检表
- 《花格子小牛》教学反思
评论
0/150
提交评论