高中数学必修三讲义 知识点_第1页
高中数学必修三讲义 知识点_第2页
高中数学必修三讲义 知识点_第3页
高中数学必修三讲义 知识点_第4页
高中数学必修三讲义 知识点_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、算法的含义、程序框图1算法的概念(1)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等。在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成(2)算法的特征:确定性:算法的每一步都应当做到准确无误、“不重不漏”。“不重”是指不是可有可无的、甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务。逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣。分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续。有穷性:算法要

2、有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行。(3)算法的描述:自然语言、程序框图、程序语言2程序框图(1)程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;(2)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何算法程序框图不可缺少的。输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。处理框赋值、计算。算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内。判断框判断某一条件是否成立,成

3、立时在出口处标明“是”或“y”;不成立时在出口处标明则标明“否”或“n”。流程线算法进行的前进方向以及先后顺序循环框用来表达算法中重复操作以及运算连结点连接另一页或另一部分的框图注释框帮助编者或阅读者理解框图(3)程序框图的构成一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字3几种重要的结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构。ab示意图输入nflag=1见示意图和实例: 顺序结构在程序框图中的体现就是用流程线

4、将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,a框和b框是依次执行的,只有在执行完a框指定的操作后,才能接着执行b框所指定的操作。pabyn(2)条件结构如下面图示中虚线框内是一个条件结构,此结构中含有一个判断框,算法执行到此判断给定的条件p是否成立,选择不同的执行框(a框、b框)。无论p条件是否成立,只能执行a框或b框之一,不可能既执行a框又执行b框,也不可能a框、b框都不执行。a框或b框中可以有一个是空的,即不执行任何操作见示意图(3)循环结构在一些算法中要求重复执行同一操作的结构称为循环结构。即从算法某处开始,按照一定条件重复执行某一处理过程。重复执行的处理步骤称为循环体

5、。循环结构有两种形式:当型循环结构和直到型循环结构。当型循环结构,如左下图所示,它的功能是当给定的条件p成立时,执行a框,a框执行完毕后,返回来再判断条件p是否成立,如果仍然成立,返回来再执行a框,如此反复执行a框,直到某一次返回来判断条件p不成立时为止,此时不再执行a框,离开循环结构。继续执行下面的框图。a成立不成立p当型循环结构 直到型循环结构成立不成立pa直到型循环结构,如右下图所示,它的功能是先执行重复执行的a框,然后判断给定的条件p是否成立,如果p仍然不成立,则返回来继续执行a框,再判断条件p是否成立。以次重复操作,直到某一次给定的判断条件p时成立为止,此时不再返回来执行a框,离开循

6、环结构。继续执行下面的框图见示意图随机事件的概率与古典概型1随机事件的概念在一定的条件下所出现的某种结果叫做事件。(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件2随机事件的概率事件a的概率:在大量重复进行同一试验时,事件a发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件a的概率,记作p(a)。由定义可知0p(a)1,显然必然事件的概率是1,不可能事件的概率是0。3事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个

7、事件叫做互斥事件;(3)包含:事件a发生时事件b一定发生,称事件a包含于事件b(或事件b包含事件a);4事件间的运算(1)并事件(和事件)若某事件的发生是事件a发生或事件b发生,则此事件称为事件a与事件b的并事件。注:当a和b互斥时,事件a+b的概率满足加法公式:p(a+b)=p(a)+p(b)(a、b互斥);且有p(a+)=p(a)+p()=1。(2)交事件(积事件)若某事件的发生是事件a发生和事件b同时发生,则此事件称为事件a与事件b的交事件5古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:p(a

8、)=;一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件a由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是。如果某个事件a包含的结果有m个,那么事件a的概率p(a)=。基本算法语句1输入语句输入语句的格式:input “提示内容”; 变量例如:input “x=”; x功能:实现算法的输入变量信息(数值或字符)的功能。要求:(1)输入语句要求输入的值是具体的常量;(2)提示内容提示用户输入的是什么信息,必须加双引号,提示内容 “原原本本”的在计算机屏幕上显示,提示内容与变量之

9、间要用分号隔开;(3)一个输入语句可以给多个变量赋值,中间用“,”分隔;输入语句还可以是“提示内容1”;变量1,“提示内容2”;变量2,“提示内容3”;变量3,”的形式。例如:input“a=,b=,c=,”;a,b,c。2输出语句输出语句的一般格式:print“提示内容”;表达式例如:print“s=”;s功能:实现算法输出信息(表达式)要求:(1)表达式是指算法和程序要求输出的信息; (2)提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开。(3)如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔;输出语句还可以是

10、“提示内容1”;表达式1,“提示内容2”;表达式2,“提示内容3”;表达式3,”的形式;例如:print “a,b,c:”;a,b,c。3赋值语句赋值语句的一般格式:变量=表达式赋值语句中的“”称作赋值号作用:赋值语句的作用是将表达式所代表的值赋给变量;要求:(1)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式。如:2=x是错误的;(2)赋值号的左右两边不能对换。赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量。如“a=b”“b=a”的含义运行结果是不同的,如x=5是对的,5=x是错的,a+b=c是错的,c=a+b是对的。(3)不能利用赋值语句进

11、行代数式的演算。(如化简、因式分解、解方程等),如这是实现不了的。在赋值号右边表达式中每一个变量的值必须事先赋给确定的值。在一个赋值语句中只能给一个变量赋值。不能出现两个或以上的“=”。但对于同一个变量可以多次赋值。4条件语句(1)“ifthenelse”语句格式:if 条件 then语句1else语句2end if说明:在“ifthenelse”语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;end if表示条件语句的结束。计算机在执行“ifthenelse”语句时,首先对if后的条件进行判断,如果符合条件,则执行then后面

12、的“语句1”;若不符合条件,则执行else后面的“语句2”。(2)“ifthen”语句格式:if 条件 then语句end if说明:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,直接结束判断过程;end if表示条件语句的结束。计算机在执行“ifthen”语句时,首先对if后的条件进行判断,如果符合条件就执行then后边的语句,若不符合条件则直接结束该条件语句,转而执行其它后面的语句5循环语句(1)当型循环语句当型(while型)语句的一般格式为:while 条件循环体wend说明:计算机执行此程序时,遇到while语句,先判断条件是否成立,如果成立,则执行wh

13、ile和wend之间的循环体,然后返回到while语句再判断上述条件是否成立,如果成立,再执行循环体,这个过程反复执行,直到一次返回到while语句判断上述条件不成立为止,这时不再执行循环体,而是跳到wend语句后,执行wend后面的语句。因此当型循环又称“前测试型”循环,也就是我们经常讲的“先测试后执行”、“先判断后循环”。(2)直到型循环语句直到型(until型)语句的一般格式为:do循环体loop until 条件说明:计算机执行until语句时,先执行do和loop until之间的循环体,然后判断 “loop until”后面的条件是否成立,如果条件成立,返回do语句处重新执行循环体

14、。这个过程反复执行,直到一次判断 “loop until”后面的条件条件不成立为止,这时不再返回执行循环体,而是跳出循环体执行“loop until 条件”下面的语句。因此直到型循环又称“后测试型”循环,也就是我们经常讲的“先执行后测试”、“先循环后判断”。算法案例1求最大公约数(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数 (3)辗转相除法辗转相除法求

15、两个数的最大公约数,其算法可以描述如下: 输入两个正整数m和n; 求余数r:计算m除以n,将所得余数存放到变量r中;更新被除数和余数:m=n,n=r;判断余数r是否为0。若余数为0,则输出结果;否则转向第步继续循环执行如此循环,直到得到结果为止。(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术。在九章算术中记载了更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之步骤:任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续

16、这操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。2秦九韶算法秦九韶算法的一般规则:秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+.+a1x+a0的求值问题。用秦九韶算法求一般多项式f(x)= anxn+an-1xn-1+.+a1x+a0当x=x0时的函数值,可把n次多项式的求值问题转化成求n个一次多项式的值的问题,即求v0=anv1=anx+an1v2=v1x+an2v3=v2x+an3.vn=vn1x+a0观察秦九韶算法的数学模型,计算vk时要用到vk1的值,若令v0=an。我们可以得到下面的递推公式:v0=anvk=vk1+ank(k=1,2,n)这是

17、一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现3.排序排序的算法很多,课本主要介绍里两种排序方法:直接插入排序和冒泡排序(1)直接插入排序在日常生活中,经常碰到这样一类排序问题:把新的数据插入到已经排好顺序的数据列中。例如:一组从小到大排好顺序的数据列1,3,5,7,9,11,13,通常称之为有序列,我们用序号1,2,3,表示数据的位置,欲把一个新的数据8插入到上述序列中。完成这个工作要考虑两个问题:(1)确定数据“8”在原有序列中应该占有的位置序号。数据“8”所处的位置应满足小于或等于原有序列右边所有的数据,大于其左边位置上所有的数据。(2)将这个位置空出来,将数据“8”插进去。对于

18、一列无序的数据列,例如:49,38,65,97,76,13,27,49,如何使用这种方法进行排序呢?基本思想很简单,即反复使用上述方法排序,由序列的长度不断增加,一直到完成整个无序列就有序了首先,49是有序列,我们将38插入到有序列49中,得到两个数据的有序列:38,49,然后,将第三个数据65插入到上述序列中,得到有序列:38,49,65按照这种方法,直到将最后一个数据65插入到上述有序列中,得到13,27,38,49,49,65,76,97这样,就完成了整个数据列的排序工作。注意到无序列“插入排序算法”成为了解决这类问题的平台(2)冒泡法排序所谓冒泡法排序,形象地说,就是将一组数据按照从小

19、到大的顺序排列时,小的数据视为质量轻的,大的数据视为质量沉的。一个小的数据就好比水中的气泡,往上移动,一个较大的数据就好比石头,往下移动。显然最终会沉到水底,最轻的会浮到顶,反复进行,直到数据列排成为有序列。以上过程反映了这种排序方法的基本思路。我们先对一组数据进行分析。设待排序的数据为:49,38,65,97,76,13,27,49排序的具体操作步骤如下:1将第1个数与右边相邻的数38进行比较,因为3849,所以顺序不变,得到新的数据列:38,49,65,97,76,13,27,493将新数据列中的第3个数65与右边相邻的数97进行比较,因为9765,所以顺序不变,得到新的数据列:38,49

20、,65,97,76,13,27,494将新数据列中的第4个数97与右边相邻的数76进行比较,因为7697,97应下沉,所以顺序不变,得到新的数据列:38,49,65, 76,97,13,27,495将新数据列中的第5个数97与右边相邻的数13进行比较,因为1397,97应下沉,所以顺序改变,得到新的数据列:38,49,65, 76, 13,97,27,496将新数据列中的第6个数97与右边相邻的数27进行比较,因为2797,97应下沉,所以顺序改变,得到新的数据列:38,49,65, 76, 13,97,27,497将新数据列中的第7个数97与右边相邻的数49进行比较,因为4997,97应下沉

21、,所以顺序改变,得到新的数据列:38,49,65, 76, 13,97, 49,27我们把上述过程称为一趟排序。其基本特征是最大的数据沉到底,即排在最左边位置上的数据是数组中最大的数据。反复执行上面的步骤,就能完成排序工作,排序过程不会超过7趟。这种排序的方法称为冒泡排序。上面的分析具有一般性,如果数据列有n个数据组成,至多经过n1趟排序,就能完成整个排序过程4进位制(1)概念进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字09进行记数。对于任何一个数,我们可以用不同

22、的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为:,而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数。(2)进位制间的转换关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其它进制之间的转换。这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得

23、到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出。非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:第一步:从左到右依次取出k进制数各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数。十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”。非十进制之间的转换一个自然的想法是利用十进制作为桥梁。教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先有二进制数转化为十进制数,再由十进制

24、数转化成为16进制数。随机抽样三种常用抽样方法:1简单随机抽样:设一个总体的个数为n。如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。实现简单随机抽样,常用抽签法和随机数表法(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到n),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取次;成样:对应号签就得到一个容量为的样本。抽签法简便易行,当总体的个体数不多时,适宜采用这种方法(2)随机数表法编号:对总体进行编号,保证位数

25、一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。成样:对应号签就得到一个容量为的样本结论: 用简单随机抽样,从含有n个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为; 基于此,简单随机抽样体现了抽样的客观性与公平性; 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。2系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,

26、然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。系统抽样的步骤可概括为:(1)将总体中的个体编号。采用随机的方式将总体中的个体编号;(2)将整个的编号进行分段。为将整个的编号进行分段,要确定分段的间隔.当是整数时,;当不是整数时,通过从总体中剔除一些个体使剩下的个体数n能被整除,这时;(3)确定起始的个体编号。在第1段用简单随机抽样确定起始的个体边号;(4)抽取样本。按照先确定的规则(常将加上间隔)抽取样本:。3分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所

27、分成的各部分叫做层结论:(1)分层抽样是等概率抽样,它也是公平的。用分层抽样从个体数为n的总体中抽取一个容量为的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于;(2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践的应用更为广泛常用的抽样方法及它们之间的联系和区别:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个数比较少系统抽样将总体均匀分成几个部分,按照事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个数比较多分层抽样将总体分成几层,分

28、层进行抽取各层抽样时采用简单抽样或者相同抽样总体由差异明显的几部分组成不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样。随机抽样、系统抽样、分层抽样都是不放回抽样用样本估计总体及线性相关关系1用样本的数字特征估计总体的数字特征(1)众数、中位数在一组数据中出现次数最多的数据叫做这组数据的众数;将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数;(2)平均数与方差如果这n个数据是,那么叫做这n个数据平均数;如果这n个数据是,那么叫做这n个数据方差;同时 叫做

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论