版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、方程的根与函数的零点说课稿1 教材分析1.1 地位与作用本节内容为人教版普通高中课程标准实验教科书A版必修1第三章函数的应用第一节函数与方程的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课新课标教材新增了二分法,也因而设置了本节课所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是
2、“函数与方程思想”的理论基础用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础从研究方法而言,零点概念的形成和零点存在性定理的发现,符合从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台1.2 教学重点基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理2 学情分析2.1 学生具备必要的知识与心理基础通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知
3、识基础方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础2.2 学生缺乏函数与方程联系的观点高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节课必须承载的任务2.3 直观体验与准确理解定理的矛盾从方程根的角度理解函数零点,学生并不会觉得困难而用函数来确定方程根的个数和大致范围,则需要适应换言之,零点存在性定
4、理的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的举例来验证定理只为零点的存在提供充分非必要条件,所以定理的逆命题、否命题都不成立,在函数连续性、简单逻辑用语未学习的情况下,学生对定理的理解常常不够深入这就要求教师引导学生体验各种成立与不成立的情况,从正面、反面、侧面等不同的角度审视定理的条件与适用范围2.4 教学难点基于上述分析,确定本节的教学难点是:对零点存在性定理的准确理解3 目标分析依据新课标中的内容与要求,以及学生实际情况,指定教学目标如下:3.1 知识与技能目标:1、了解函数零点的概念:能够结合具体方程(如二次方程),说明方程的根、函数的零点、函数图象与x轴的交点三
5、者的关系;2、理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点可能不止一个;3、能利用函数图象和性质判断某些函数的零点个数,及所在区间3.2 过程与方法目标:1、经历“类比归纳应用”的过程,感悟由具体到抽象的研究方法,培养归纳概括能力2、初步体会函数方程思想,能将方程求解问题转化为函数零点问题3.3 情感、态度和价值观目标:1、体会函数与方程的“形”与“数”、“动”与“静”、“整体”与“局部”的内在联系2、体验规律发现的快乐4 过程分析4.1 教学结构设计:零点概念的建构零点存在性定理的探究创设情境,感知概念辨析讨论,明确概念实例尝试,
6、归纳定理辨析应用,熟悉定理例题变式,深化拓展应用与巩固小结反思,提高认识布置作业,独立探究结课约10分钟约15分钟约12分钟约3分钟4.2 教学过程设计:(一)创设情境,感知概念1、实例引入解方程:(1)2-x=4;(2)2-x=x意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情2、一元二次方程的根与二次函数图象之间的关系填空:方程x2-2x-3=0x2-2x+1=0x2-2x+3=0根x1=-1,x2=3x1=x2=1无实数根函数y=x2-2x-3y=x2-2x+1y=x2-2x+3图象42-2-43-112Oxy42-2-43-112Oxy42-23-112Oxy图
7、象与x轴的交点两个交点:(-1,0),(3,0)一个交点:(1,0)没有交点问题1:从该表你可以得出什么结论?归纳:判别式000方程ax2+bx+c=0 (a0)的根两个不相等的实数根x1、x2有两个相等的实数根x1 = x2没有实数根函数y=ax2+bx+c (a0)的图象Oxyx1x2Oyxx1Oxy函数的图象与x轴的交点两个交点:(x1,0),(x2,0)一个交点:(x1,0)无交点问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系?学生讨论,得出结论:一元二次方程的根就是函数图象与x轴交点的横坐标意图:通过回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方
8、程关系作准备3、一般函数的图象与方程根的关系问题3:其他的函数与方程之间也有类似的关系吗?请举例!师生互动,在学生提议的基础上,老师加以改善,现场在几何画板下展示类似如下函数的图象:y2x4,y2x8,yln(x2),y(x1)(x2)(x3)比较函数图象与x轴的交点和相应方程的根的关系,从而得出一般的结论:方程f(x)0有几个根,yf(x)的图象与x轴就有几个交点,且方程的根就是交点的横坐标意图:通过各种函数,将结论推广到一般函数,为零点概念做好铺垫(二)辨析讨论,深化概念4、函数零点概念:对于函数yf(x),把使f(x)0的实数x叫做函数yf(x)的零点即兴练习:函数f(x)=x(x216
9、)的零点为( D )A(0,0),(4,0) B0,4C(4,0),(0,0),(4,0) D4,0,4设计意图:及时矫正“零点是交点”这一误解说明:函数零点不是一个点,而是具体的自变量的取值求函数零点就是求方程f(x)0的根5、归纳函数的零点与方程的根的关系问题4:函数的零点与方程的根有什么共同点和区别?(1)联系:数值上相等:求函数的零点可以转化成求对应方程的根;存在性一致:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点(2)区别:零点对于函数而言,根对于方程而言以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函
10、数问题来求解,这正是函数与方程思想的基础练习:求下列函数的零点:2-2-41O1-2234-3-1-1yx设计意图:使学生熟悉零点的求法(即求相应方程的实数根)(三)实例探究,归纳定理6、零点存在性定理的探索问题5:在怎样的条件下,函数yf(x)在区间a,b上一定有零点?探究:(1)观察二次函数f(x)x22x3的图象:在区间-2,1上有零点_;f(-2)=_,f(1)=_,f(-2)f(1)_0(“”或“”)abcxyOd在区间(2,4)上有零点_;f(2)f(4)_0(“”或“”)(2)观察函数的图象:在区间(a,b)上_(有/无)零点;f(a)f(b) _ 0(“”或“”)在区间(b,c
11、)上_(有/无)零点;f(b)f(c) _ 0(“”或“”)在区间(c,d)上_(有/无)零点;f(c)f(d) _ 0(“”或“”)意图:通过归纳得出零点存在性定理7、零点存在性定理:如果函数yf(x)在区间a,b上的图象是连续不断一条曲线,并且有f(a)f(b)0,那么,函数yf(x)在区间(a,b)内有零点即存在c(a,b),使得f(c)0,这个c也就是方程f(x)0的根即兴练习:下列函数在相应区间内是否存在零点?(1)f(x)=log2x,x,2;(2)f(x)=ex-1+4x-4,x0,1意图:通过简单的练习适应定理的使用(四)正反例证,熟悉定理8定理辨析与灵活运用例1 判断下列结论
12、是否正确,若不正确,请使用函数图象举出反例:(1)已知函数y=f(x)在区间a,b上连续,且f(a)f(b)0,则f(x)在区间(a,b)内有且仅有一个零点( )(2)已知函数y=f(x)在区间a,b上连续,且f(a)f(b)0,则f(x)在区间(a,b)内没有零点( )(3)已知函数y=f(x)在区间a,b满足f(a)f(b)0,则f(x)在区间(a,b)内存在零点( )请一位学生板书反例,其他学生补充评析,例如:abOxyabOxyabOxy归纳:定理不能确零点的个数;定理中的“连续不断”是必不可少的条件;不满足定理条件时依然可能有零点意图:通过对定理中条件的改变,将几种容易产生的误解正面
13、给出,在第一时间加以纠正,从而促进对定理本身的准确理解9、练习:(1)已知函数f (x)的图象是连续不断的,有如下的x,f(x)对应值表:x1234567f(x)23971151226那么函数在区间1,6上的零点至少有( C )A5个B4个C3个D2个(2)方程 x 3 3x + 5=0的零点所在的大致区间为( )A( 2,0)B(0,1)C(0,1)D(1,2)意图:一方面促进对定理的活用,另一方面为突破后面的例题铺设台阶(五)综合应用,拓展思维10、例题讲解例2:求函数f(x)lnx2x6的零点的个数,并确定零点所在的区间n,n+1(nZ)解法1(借助计算工具):用计算器或计算机作出x、f
14、(x)的对应值表和图象x123456789f(x)-4.0-1.31.13.45.67.89.912.114.2由表或图象可知,f (2)0,则f (2) f (3)0,这说明函数f(x)在区间(2,3)内有零点问题6:如何说明零点的唯一性?又由于函数f(x)在(0,+)内单调递增,所以它仅有一个零点解法2(估算):估计f(x)在各整数处的函数值的正负,可得如下表格:x1234f(x)结合函数的单调性,f(x)在区间(2,3)内有唯一的零点解法3(函数交点法):将方程lnx2x6=0化为lnx=6-2x,分别画出g(x)=lnx与h(x)=6-2x的草图,从而确定零点个数为1继而比较g(2)、
15、h(2)、g(3)、h(3)等的大小,确定交点所在的区间,即零点的区间 6Oxy2134g(x)h(x)由图可知f(x)在区间(2,3)内有唯一的零点意图:通过例题分析,能根据零点存在性定理,使用多种方法确定零点所在的区间,并且结合函数性质,判断零点个数解法3作为选讲内容,视学生基础而定练习 求方程2-x =x的解的个数,并确定解所在的区间n,n+1(nZ)意图:一方面与引例相呼应,又作为例题方法的巩固,也为下一节课作铺垫(六)总结整理,提高认识(1)一个关系:函数零点与方程根的关系:函数方程零点根数 值存在性个 数(2)两种思想:函数方程思想;数形结合思想(3)三种题型:求函数零点、判断零点
16、个数、求零点所在区间(七)布置作业,独立探究1函数f(x)(x4)(x4)(x2)在区间-5,6上是否存在零点?若存在,有几个?2利用函数图象判断下列方程有几个根:(1)2x(x2)3;(2)ex144x3结合上课给出的图象,写出并证明下列函数零点所在的大致区间:(1)f(x)=2xln(x-2)-3;(2)f(x)3(x2)(x3)(x4)x思考题:方程2-x =x在区间_内有解,如何求出这个解的近似值?请预习下一节设计意图:为下一节“用二分法求方程的近似解”的学习做准备5.4 板书设计方程的根与函数的零点1、零点概念:练习:2、方程的根与函数零点的关系3、函数零点存在性定理的条件例2:例1反例:xyOxyOxyO5 教法分析新课标倡导积极主动、勇于探索的学习方式,本节课在概念的形成和深化、定理的概括和应用方面,都给予自主探究、辨析实践、动手画图及交流讨论的机会教师主要起引导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届哈尔滨市第六中学高三年级第二次四校联考数学试题
- 餐饮企业用工合同范本
- 财政审计造价合同模板
- 补钱协议书复制
- 脑梗中医治疗方法
- 新闻传播学中的新闻素养与媒介批评
- 颈椎病教学课件
- 高风险手术的围手术期管理
- 《船用眼板》规范
- 2024-2025学年上海市浦东新区洋泾中学高三(上)期中数学试卷
- 公共管理学考研试题及参考答案
- 离子色谱仪883阴离子的操作说明
- 高一家长会英语老师讲话稿5篇
- 钳工生产实习教案钻孔
- 高二年级期中考试成绩分析(课堂PPT)
- 地质图常用图例、花纹、符号
- 中学文化地理兴趣社章程及考评细则(共5页)
- 槽钢表面积对照表
- 稀土发光材料ppt
- 《白内障》PPT课件.ppt
- 2020年四年级上册语文素材-全册课文梳理(1-27课)-人教(部编版)全册可修改打印
评论
0/150
提交评论