版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题25 排列组合二项式定理1.【2017课标1,理6】展开式中的系数为a15b20c30d35【答案】c【解析】试题分析:因为,则展开式中含的项为,展开式中含的项为,故前系数为,选c.【考点】二项式定理2.【2017课标3,理4】的展开式中33的系数为a b c40d80【答案】c【解析】试题分析:, 由 展开式的通项公式: 可得:当 时, 展开式中 的系数为 ,当 时, 展开式中 的系数为 ,则 的系数为 .故选c.【考点】 二项式展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时
2、要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且nr,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3.【2017课标ii,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )a12种 b18种 c24种 d36种【答案】d【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有种方法,然后进行全排列即可,由乘法原理,不同的安排方式共有种方法。 故选d。4. 【2016高考新课标2理
3、数】如图,小明从街道的e处出发,先到f处与小红会合,再一起到位于g处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(a)24 (b)18 (c)12 (d)9【答案】b【解析】试题分析:由题意,小明从街道的e处出发到f处最短有条路,再从f处到g处最短共有条路,则小明到老年公寓可以选择的最短路径条数为条,故选b.考点: 计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的5. 【2016年高考四川理数】设i
4、为虚数单位,则的展开式中含x4的项为(a)15x4 (b)15x4 (c)20i x4 (d)20i x4【答案】a【解析】试题分析:二项式展开的通项,令,得,则展开式中含的项为,故选a.考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可二项式的展开式可以改为,则其通项为,即含的项为6. 【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(a)24 (b)48 (c)60 (d)72【答案】d【解析】7. 【2015高考陕西
5、,理4】二项式的展开式中的系数为15,则( )a4 b5 c6 d7【答案】c【解析】二项式的展开式的通项是,令得的系数是,因为的系数为,所以,即,解得:或,因为,所以,故选c【考点定位】二项式定理【名师点晴】本题主要考查的是二项式定理,属于容易题解题时一定要抓住重要条件“”,否则很容易出现错误解本题需要掌握的知识点是二项式定理,即二项式的展开式的通项是8. 【2016高考新课标3理数】定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有( )(a)18个 (b)16个 (c)14个 (d)12个【答案】c【解析】试题分析:
6、由题意,得必有,则具体的排法列表如下:00001111101110110100111011010011010001110110100110考点:计数原理的应用【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果9. 【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(a)144个 (b)120个 (c)96个 (d)72个【答案】b【解析】据题意,万位上只能排4、5.若万位上排4,则有个;若万位上排5,则有个.
7、所以共有个.选b.【考点定位】排列组合.10.【2015高考新课标1,理10】的展开式中,的系数为( )(a)10 (b)20 (c)30 (d)60【答案】c【解析】在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取y,故的系数为=30,故选 c.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.11. 【2015高考湖北,理3】已知的展开式中第4项与第8项的二项式系数相等,则
8、奇数项的二项式系数和为( ) a. b c d【答案】d【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:,奇数项的二项式系数和与偶数项的二项式系数和相等.12. 【2014辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )a144 b120 c72 d24【答案】c【解析】试题分析:将6把椅子依次编号为1,2,3,4,5,6,故任何两人不相邻的做法,可安排:“1,3,5”;“1,3,6”;“1,4,6”;“2
9、,4,6”号位置坐人,故总数由4=24,故选d.考点:排列组合. 13. 【2015湖南理2】已知的展开式中含的项的系数为30,则( )a. b. c.6 d-6【答案】d.【解析】试题分析:,令,可得,故选d.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握的二项展开式的通项第项为,即可建立关于的方程,从而求解.14.【2017浙江,16】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有_中不同的选法(用数字作答)【答案】660【解析】试题分析:由题意可得:总的选择方法为种方法,其中不满足题意
10、的选法有种方法,则满足题意的选法有:种【考点】排列组合的应用【名师点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率在某些特定问题上,也可充分考虑“正难则反”的思维方式15.【2017浙江,13】已知多项式32=,则=_,=_【答案】16,4【解析】试题分析:由二项式展开式可得通项公式为:,分别取和可得,令可得【考点】
11、二项式定理16.【2017天津,理14】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有_个.(用数字作答)【答案】 【解析】 【考点】计数原理、排列、组合【名师点睛】计数原理包含分类计数原理(加法)和分步计数原理(乘法),组成四位数至多有一个数字是偶数,包括四位数字有一个是偶数和四位数字全部是奇数两类,利用加法原理计数.17. 【2016年高考北京理数】在的展开式中,的系数为_.(用数字作答)【答案】60.【解析】试题分析:根据二项展开的通项公式可知,的系数为,故填:.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展
12、开式中的某一项,如第项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合的范围分析.18.【2016高考新课标1卷】的展开式中,x3的系数是 .(用数字填写答案)【答案】【解析】试题分析:的展开式通项为(,1,2,5),令得,所以的系数是.考点:二项式定理19.【2016高考天津理数】的展开式中x2的系数为_.(用数字作答)【答案】【解析】试题分析:展开式通项为,令,所以的故答案为 考点:二项式定理2有理项是字母指数为整数
13、的项解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解20.【2016高考山东理数】若(ax2+)5的展开式中x5的系数是80,则实数a=_.【答案】-2【解析】试题分析:因为,所以由,因此考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.21.【2015高考天津,理12】在 的展开式中,的系数为 .【答案】【解析】展开式的通项为,由得,所以,所以该项系数为.【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开
14、式的通项的应用.应用二项式定理典型式的通项,求出当时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.22.【2015高考北京,理9】在的展开式中,的系数为(用数字作答)【答案】40【解析】利用通项公式,令,得出的系数为23.【2015高考广东,理9】在的展开式中,的系数为 .【答案】【解析】由题可知,令解得,所以展开式中的系数为,故应填入【考点定位】二项式定理【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第项为:24.【2015高考广东,理12】某高三毕业班有人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共
15、写了 条毕业留言(用数字作答)【答案】【解析】依题两两彼此给对方写一条毕业留言相当于从人中任选两人的排列数,所以全班共写了条毕业留言,故应填入【考点定位】排列问题【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清人两两彼此给对方仅写一条毕业留言是个排列问题25.【2015高考四川,理11】在的展开式中,含的项的系数是 (用数字作答).【答案】.【解析】,所以的系数为.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.26.【2016高考上海理数】在的二项式中,所有项的二项式系数之和为256,则常数项等于_.【答案】【解析】【名师点睛】根据二项式展开
16、式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.27.【2014课标,理13】的展开式中的系数为_.(用数字填写答案)【答案】【解析】由题意,展开式通项为,当时,;当时,故的展开式中项为,系数为【考点定位】二项式定理【名师点睛】本题主要考查二项式定理的应用,考查考生的记忆能力和计算能力.28.【2015高考重庆,理12】的展开式中的系数是_(用数字作答).【答案】【解析】二项展开式通项为,令,解得,因此的系数为.29.【2015高考安徽,理11】的展开式中的系数是 .(用数字填写答案)【答案】【解析】由题意,二项式展开的通项,令,得,则的系数是.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.30.【2015高考福建,理11】 的展开式中,的系数等于 (用数字作答)【答案】【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新光伏发电项目开发合同(2024版)3篇
- 4在民族复兴的历史丰碑上-统编版高中语文选择性必修上册
- 2024年度高端住宅小区建设设计与施工合同2篇
- 2024年度光伏发电项目电气施工合同3篇
- 二零二四年度旅游景点开发合同:某旅游公司与某地政府2篇
- 2024年度私家车租赁合同2篇
- 二零二四年度钢筋工程研发合作协议2篇
- 2024年度离婚后知识产权权益分配合同3篇
- 钢管模板租赁合同2024年度价格比较与分析7篇
- 二零二四年度可再生能源开发与利用合同
- 成人肠造口护理-2019中华护理学会团体标准
- 森林防火智能监测预警指挥系统建设方案-
- 内蒙古自治区呼和浩特市单招综合素质真题(含答案)
- 2021血透室医疗质量与安全管理小组活动记录
- 2023学年完整公开课版冰粉的制作
- 职业暴露针刺伤应急预案演练脚本-
- IEC60601-1检测项目及产品结构要求
- 绵阳东辰学校五升六预备年级招生考试数学试题
- 超星尔雅学习通《劳动通论》章节测试答案
- 高中美术 主题一 实体与虚空-凝固的音乐-课件
- GB/T 36344-2018信息技术数据质量评价指标
评论
0/150
提交评论