下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、公因数与公倍数基本概念及应用汇总1、公因数:几个数共有的因数,叫这几个数的公因数。最大公因数:公因数中最大的一个叫这几个数的最大公因数。2、公倍数:几个数共有的倍数,叫这几个数的公倍数。最小公倍数:公倍数中最小的一个叫这几个数的最小公倍数。3、三种关系的数如何求最小公倍数与最大公因数:当两个数是互质数时,它们的最大公因数是 1,最小公倍是它 们的积;当两个数是倍数关系时,较小的数是这两个数的最大公因数, 较大的数是这两个数的最小公倍数;当两个数是一般关系时,用短除法求这两个数的最大公因数与 最小公倍数。由此可知,最大公因数是公有质因数连乘的积,最小公倍数是公 有和独有因数连成的积。可见,最小公
2、倍数是最大公因数的倍数,最 大公因数是最小公倍数的因数。掌握这一点是解决此类问题的关键。4、最大公因数与最小公倍数实际应用例题。例1、a=2 x3 x5 x7,贝u a因数有()个。分析:一个合数分解质因数后,其因数是一个或几个质因数连成 的积。因此,数a的因数为;一个质因数构成的,2、3、5、7;两个 质因数构成的6、10、14、15、21、35;三个质因数构成的 30、 42、105、70;四个质因数构成的210;除此之外还有1.共16个。例2、a=2 x2x3 b=2 x3x5则a、b的最大公因数与最小公倍 数分别是()()分析:因为“最大公因数是公有质因数连乘的积”,所以a、b的最大公
3、因数为2x3=6; “最小公倍数是公有和独有因数 连成的积” a、b的最小公倍数为2x3x2x5=60练习已知甲、乙两数的最大公因数是 6,最小公倍数是36, 求甲、乙两数。分析:“最小公倍数是公有和独有因数连成的积,因此最小公倍 数是最大公因数的倍数,”解析36y=6 6即为独有因数的积,6=1 x6或6=2 x3因此甲乙两个数分别为(1 x6=6 6 x6=36 )或(2x6=12 3 x6=18 )两个数最大公因数是12,最小公倍数是180,且大数不是小 数的倍数,求这两个数。解析:180 +12=15 15=3 x5(3x12=36 5 x12=60 )例3、两个数的最大公因数是42,
4、最小公倍数是2940 ,且两个 数的和是714 ,这两个数各是多少?解析:2940刃2=70 ( 70为独有因数连成的积)。“两个数 的和是714”,则两数和是最大公因数的倍数,它是最大公因数与独 有因数和的积,因此714+42=17 , 17是独有因数的和。因此70只 能分解成 10 和 7 的积,70=7 x10 (7x42=294 10 x42=420 )练习已知两个自然数的和为 72,它们的最大公因数是12,求 这两个数。解析:72 +12=6 6=1 +5 (1 x12=12 5 x12=60 )例4、把长20厘米,宽42厘米的长方形铁片剪成边长是整厘米数,面积相等的正方形铁片,并且
5、没有剩余,至少可剪多少块?分析:因为要剪成“面积相等的正方形铁片,并且没有剩余”, 因此,正方的边长既是20的因数,也是42的因数,并且是最大的 公因数;42和20的最大公因数是2,故正方形边长为2厘米。剪得块数即为:(20+2) x (42+2) =210 (块)求54、36、72的最大公因数。练习把长120厘米,宽80厘米的铁板裁成面积相等,最大的 正方形而且没有剩余,可以裁成多少块?提示:求120、18的最大公因数。例5、用长5厘米,宽3厘米的长方形铁片,摆成一个正方形(中 间没有空隙),至少要有多少块这种长方形铁片?分析:用这样的长方形摆成正方形,则正方形的边长既是5的倍 数,也是3的
6、倍数。因是至少需几块,所以应该是 5和3的最小公 倍数。5和3的最小公倍数是15。所以需块数为:(15+5) x (15+3) =15 (块)练习排练团体操时,要求队伍变成 10行、15行、18行、24 行时,队形都能成为长方形,最少需要多少人参加团体操的排练?提示:求 10 , 15 , 18,24 的最小公倍数,10 ,15,18, 24=3601例6、某幼儿园借阅图书,如借35本,平均分给每个小朋友差1本;如借56本,平均分给每个小朋友后还剩 2本;如借69本,平均分给每个小朋友则差3本。这个班的小朋友最多有多少人?分析:小朋友数即为36、54、72的最大公因数。例7现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等, 那么 最多分给了多少个班?每个班至少分到了三种水果各多少千克?分析:班数即为42、112、70的最大公因数。每种水果数除以班数即为分得的水果。练习有三根铁丝,一根长54米,一根长72米,一根长36米, 要把它们截成同样长的小段,不许剩余,每段最长是多少米?例8、练习、有一个自然数,被6除余1 ,被5除余1 ,被4除
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物流货物托运与物流园区运营管理合同3篇
- 2024民办学校校长任期教育资源共享合同3篇
- 2024年股权投资与收购协议2篇
- 2024年物流信息化系统建设合同范本3篇
- 2024水暖电消防承包合同范本
- 2024年餐饮业劳动协议标准版版B版
- 2024年环保设备制造与安装合同3篇
- 2024年银团贷款合同
- 2024年知识产权购买协议
- 2024年猫咪销售合同:规范市场交易的典范
- 现代汉语常用词汇表(两字)
- 经典分镜教程-电影分镜头画面设计机位图设计课件
- 我国钢铁企业环境会计信息披露问题研究以宝钢为例13.26
- 中医内科学目录
- 锅炉日常巡回检查表
- “大综合一体化”行政执法改革工作自查报告
- DB37T 3642-2019 全氟己酮灭火系统设计、施工及验收规范
- DB5110∕T 37-2021 地理标志产品 资中冬尖加工技术规范
- 常见生产安全事故防治PPT课件
- 粉末涂料使用说明
- 玻璃瓶罐的缺陷产生原因及解决方法63699
评论
0/150
提交评论