应用多元统计分析习题解答_聚类分析_第1页
应用多元统计分析习题解答_聚类分析_第2页
应用多元统计分析习题解答_聚类分析_第3页
应用多元统计分析习题解答_聚类分析_第4页
应用多元统计分析习题解答_聚类分析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第五章聚类分析5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有 n个样本,对每 个样本测得p项指标(变量)的数据,已知每个样本属于k个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知 道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别 分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。5.2 试述系统聚类的基本思想。答:系统聚类的基本思想

2、是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类, 过程一直进行下去,每个样品(或变量)总能聚到合适的类中。5.3 对样品和变量进行聚类分析时,所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为我们把n个样本看作p维空间的n个点。点之间的距离即可代表样品间的相似度。常用的距离为 小,/ q、i/q(一)闵可夫斯基距离:dj (q) = (e xik - x jk ) k=1q取不同值,分为 (1)绝对距离(q =1)pdj(1) = xik-xjk k 1(2)欧氏距离(q=2)p2dij(2 式 xik x j:/)2 k

3、=1(3)切比雪夫距离(q=)dij(qo) = mkaxp xik-xjk(二)马氏距离dj(l)=-z ixlxjk-j pk+xik xjk(三)兰氏距离dj(m) = (xi xj)j(xix )对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。将变量看作p维空间的向量,一般用 p(一)夹角余弦v xikxjkcos毒pp(xi2)0xji)k 1k 1(二)相关系数r1 ijp_二.(xik -xi)(xjk x j)k 1ppxik -xi)2 (xjkk 1k 1-xj)25.4在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原

4、 则?答:设dj表示小品为与xj之间距离,用 dj表示类gi与gj之间的距离。(1).最短距离法djminxi gi,xj .gjdjminxi gk ,x j grdj =mindkp,dkq(2)最长距离法dpq= maxdijxi - g p , x j -gqdkr max dij n maxdkp,dkqxi gk ,xj gr(3)中间距离法_ 21 _ 21 _ 2 二 _ 2dkr = dkp dkq dpq221i-1 /ji 0其中(4)重心法d2q =(xp-xq)(xp-xq) 兄=女nqxq)ndi% d2dkpnrnq d2dkq 一nrhpaq2 nrdjq(5)

5、类平均法djqzxi .gd2r12dijnknr xi gk xj.d二为 dkp adkqnr(6)可变类平均法nq dkq) dpqd2r =(1)(npdkp nr其中昵可变的且p 1(7)可变法21222dkr =-2-(dkp +dkq) + pdpq其中 p是可变的且 p 1(8)离差平方和法n _st (xit -xt)(xit -xt)11d2r片盯九一七通常选择距离公式应注意遵循以下的基本原则:(1)要考虑所选择的距离公式在实际应用中有明确的意义。如欧氏距离就有非常明确的空间距离概念。马氏距离有消除量纲影响的作用。(2)要综合考虑对样本观测数据的预处理和将要采用的聚类分析方

6、法。如在进行聚类分析之前已经对变量作了标准化处理,则通常就可采用欧氏距离。(3)要考虑研究对象的特点和计算量的大小。样品间距离公式的选择是一个比较复杂且带有一定主观性的问题, 我们应根据研究对象的特点不同做出具体分折。 实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类,然后对聚类分析的结果进行对比分析,以确定最合适的距离测度方法。5.5 试述k均值法与系统聚类法的异同。答:相同:k均值法和系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的。不同:系统聚类对不同的类数产生一系列的聚类结果,而k均值法只能产生指定类数的聚类结果。具体类数的确定,离不开实践经验的积累; 有时也可以借助系

7、统聚类法以一部分样品为 对象进行聚类,其结果作为 k均值法确定类数的参考。5.6 试述k均值法与系统聚类有何区别?试述有序聚类法的基本思想。答:k均值法的基本思想是将每一个样品分配给最近中心(均值)的类中。系统聚类对不同的类数产生一系列的聚类结果,而k均值法只能产生指定类数的聚类结果。具体类数的确定,有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为k均值法确定类数的参考。有序聚类就是解决样品的次序不能变动时的聚类分析问题。如果用x(1), x,,x(n)表示n个有序的样品,则每一类必须是这样的形式,即x(i),x(i却,x,其中iwiwn,且j 26 =2于是将g , g6聚为一

8、类,记为gs计算样本距离阵一,二.g? g& gg冽0立;30,630卜。:i口y”中最小元素是”于是将g,,聚为一类,记为g9因此,g1gw1gg,1 2 w(2)用重心法进行聚类分析计算样品间平方距离阵 i.vgg?g g.gcgftl.3*口n国04102516906449369010081642540于是将gi易知doy中最小元素是 记为“计算距离阵y1y1649258164160注:计算方法,其他以此类推。02y1y中最小元素是d”6 =4于是将gs6聚为一类,记为gb计算样本距离阵一亡y16d?2y中最小元素是 于是将g.,聚为一类,记为gg 因此,5.8下表是15个上市公司200

9、1年的一些主要财务指标,使用系统聚类法和k-均值法分别对这些公司进行聚类,并对结果进行比较分析。公司 编号净资产 收益率每股净 利润总资产周转率资产负 债率流动负 债比率每股净 资产净利润 增长率总资产增长率111.090.210.0596.9870.531.86-44.0481.99211.960.590.7451.7890.734.957.0216.11300.030.03181.99100-2.98103.3321.18411.580.130.1746.0792.181.146.55-56.325-6.19-0.090.0343.382.241.52-1713.5-3.366100.47

10、0.4868.4864.7-11.560.85710.490.110.3582.9899.871.02100.2330.32811.12-1.690.12132.14100-0.66-4454.39-62.7593.410.040.267.8698.511.25-11.25-11.43101.160.010.5443.71001.03-87.18-7.411130.220.160.487.3694.880.53729.41-9.97128.190.220.3830.311002.73-12.31-2.771395.79-5.20.5252.3499.34-5.42-9816.52-46.821

11、416.550.350.9372.3184.052.14115.95123.4115-24.18-1.160.7956.2697.84.81-533.89-27.74解:令净资产收益率为 x1,每股净利润 x2,总资产周转率为 x3,资产负债率为 x4,流动负 债比率为x5,每股净资产为 x6,净利润增长率为 x7,总资产增长率为 x8,用spss对公司 聚类分析的步骤如下: a)系统聚类法:1.在 spss口中选择 analyze-classify fhierachical cluster ,调出 系统聚类分析主界面,并将变量x1-x8移入variables框中。在cluster 栏中选择c

12、ases单选按钮,即对样品进行聚类(若选择variables ,则对变量进行聚类)。在 display栏中选择statistics 和plots复选框, 这样在结果输出窗口中可以同时得到聚类结果统计量和统计图。2.3.图5.1系统分析法主界面点击statistics 按钮,设置在结果输出窗口中给出的聚类分析统计量。我们选择 agglomeration schedule 与 cluster membership 中的 rangeof solution 2-4,如图5.2所示,点击continue按钮,返回主界面。(其中,agglomeration schedule表示在结果中给出聚类过程表,显示

13、 系统聚类的详细步骤;proximity matrix表示输出各个体之间的距离矩 阵;cluster membership表示在结果中输出一个表,表中显示每个个体 被分配到的类别,rangeof solution 2-4即将所有个体分为2至4类。) 点击plots按钮,设置结果输出窗口中给出的聚类分析统计图。选中 dendrogram复选框和icicle 栏中的none单选按钮,如图5.3 ,即只给 出聚类树形图,而不给出冰柱图。单击 continue按钮,返回主界面。hierardikal cluster analysis: pfo.h hierarchical cluster ana ly

14、sis:同a的修巾声前时1疑也出出prsisdriity rtiiirixckiirler memlwhipq sfqic sdbtonnumber df dusters::*) range of tdiliantmnmjni number 川 du目ww2number 口f卓r况4图5.2 statistics 子对话框图5.3 plots子对话框4.点击method按钮,设置系统聚类的方法选项。cluster method 下拉列表用于指定聚类的方法,这里选择 between-group inkage (组间平均数 连接距离);measure栏用于选择对距离和相似性的测度方法,选择 squ

15、ared euclidean distance (欧氏距离);单击 continue 按钮,返回 主界面。也制4趋生3班生口拦生111121113111111521611171118321g11110111111111211113q321411115111群集成员pescaled distance cluster cgnfciine10g11图5.6聚类树形图caselakiel num124 id踮 hierarchical cluster airudly5is: sa!.匕邈micluster membership1c乜叫已c single solution! nuitiber of cl

16、usters:11 j 5,amge of snlutiansivfnimuih number of clusters: 2 hfexjmum number gf dusters; 4cntmue cante help一图5.4 method子对话框图5.5 save子对话框5 .点击save按钮,指定保存在数据文件中的用于表明聚类结果的新变量。none表示不保存任何新变量;single solution表示生成一个分类变量,在其后的矩形框中输入要分成的类数;range of solutions表示生成多个分类变量。这里我们选择 range of solutions ,并在后面的两个矩形 框中

17、分别输入2和4,即生成三个新的分类变量,分别表明将样品分为2 类、3类和4类时的聚类结果,如图5.5。点击continue ,返回主界面。6 .点击ok按钮,运行系统聚类过程。聚类结果分析:下面的群集成员表给出了把公司分为2类,3类,4类时各个样本所属类别的情况,另外,从右边的树形图也可以直观地看到,若将15个公司分为2类,则13独自为一类,其余的为一类;若分为3类,则公司8分离出来,自成一类。以此类推。表5.1各样品所属类别表b) k均值法的步骤如下:1 .在 spss口中选择 analyze-classify -k-means cluster ,调出 k均 值聚类分析主界面,并将变量 x1

18、-x8移入variables 框中。在method 框中选择iterate classify ,即使用k-means算法不断计算新的类中心, 并替换旧的类中心(若选择classify only ,则根据初始类中心进行聚类,在聚类过程中不改变类中心)。在 number of cluster 后面的矩形 框中输入想要把样品聚成的类数,这里我们输入 3,即将15个公司分为3类。(centers按钮,则用于设置迭代的初始类中心。如果不手工设置,则 系统会自动设置初始类中心,这里我们不作设置。)图5.7 k均值聚类分析主界面2.点击iterate 按钮,对迭代参数进行设置。maximumlteratio

19、ns 参数框 用于设定 k-means算法迭代 的最大次数,输入10, convergence criterion 参数框用于设定算法的收敛判据,输入0,只要在迭代的过程 中先满足了其中的参数,则迭代过程就停止。单击 continue ,返回主界 面。图5.8 iterate子对话框3.点击save按钮,设置保存在数据文件中的表明聚类结果的新变量。我们将两个复选框都选中,其中cluster membership选项用于建立一个代表 聚类结果的变量,默认变量名为 qcl_1 ; distance from cluster center 选项建立一个新变量,代表各观测量皿所属类中心的欧氏距离。单击

20、 continue按钮返回。4.图5.9 save子对话框点击options按钮,指定要计算的统计量。选中initial cluster centers和cluste门nformation for each case复选框。这样,在输出窗口中将给出聚类的初始类中心和每个公司的分类信息,包括分配到哪一类和 该公司距所属类中心的距离。单击continue返回。弼 k-meam cluster analysis: optio. msbstaftslira*卜而引clust jenters匚绅iwm的lg匣 qusler infernwtion for each casemishin 啕 valuer

21、f* exclude cases itstwiseq exdude casescirtinue cancel | help |图5.10 options子对话框5.点击ok按钮,运行k均值聚类分析程序。聚类结果分析:以下三表给出了各公司所属的类及其与所属类中心的距离,聚类形成的类的中心的各变量值以及各类的公司数。由以上表格可得公司 13与公司8各自成一类,其余的公司为 一类。通过比较可知,两种聚类方法得到的聚类结果完全一致。塞,“奥举距离1398,15323112,95933235.34643132 426531 609.958630330973206,51182,0009395,923103

22、38,967113834134123101,852131,0001 43246,882153433,179聚类成员果类 11.00021.d00313,000有效1 5,000缺失00诲个聚类中的案例数匏类123x195.7911.12648x2-5.20-i.es.08x3.5012,39x4252.3+132.1 471 48x599.34100.0092.06x5-5 42-.561 sox7-9b16.52-4454.39-103.04x3-46.92-627511.01最多聚类中心x5,娱乐教育文化支出为 x6,用spss对16各地区聚类分析的步骤如 第4个步骤的method子对话框

23、中选择不同的 cluster method。1. between-group inkage (组间平均数连接距离)至副4注隹3番篁111122?1332143215221e2217221822194321c221111111222113221142211532116321群维成员5.9下表是某年我国16个地区农民支出情况的抽样调查数据,每个地区调查了反映每人平 均生活消费支出情况的六个经济指标。试通过统计分析软件用不同的方法进行系统聚类分地区食品衣着燃料住房交通和 通讯娱乐教 育文化北京190.3343.779.7360.5449.019.04天津135.236.410.4744.1636.4

24、93.94河北95.2122.839.322.4422.812.8山西104.7825.116.49.8918.173.25内蒙128.4127.638.9412.5823.992.27辽宁145.6832.8317.7927.2939.093.47吉林159.3733.3818.3711.8125.295.22黑龙江116.2229.5713.2413.7621.756.04上海221.1138.6412.53115.6550.825.89江苏144.9829.1211.6742.627.35.74浙江169.9232.7512.7247.1234.355安徽135.1123.0915.62

25、23.5418.186.39福建144.9221.2616.9619.5221.756.73江西140.5421.517.6419.1915.974.94山东115.8430.2612.233.633.773.85河南101.1823.268.4620.220.54.3解:令食品支出为x1,衣着支出为x2,燃料支出为x3,住房支出为x4,交通和通讯支出为析,并比较何种方法与人们观察到的实际情况较接近。5.8题,不同的方法在上表给出了把全国16个地区分为2类、3类和4类时,各地区所属的类别,另外从右边的树形图也可以直观地观察到,若用组间平均数连接距离将这些地区分为3类,则9 (上海)独自为一类,

26、1 (北京)和11 (浙江)为一类,剩余地区为一类。2. within-group linkage(组内平均连接距离)零时4重生建奖x憔11112221322141215事212217221a321g432102211122112?2113721142211532116321器集成员若用组内平均数连接距离将这些地区分为 为一类,剩余地区为一类。3类,则9 (上海)独自为一类,1 (北京)独自3. nearest neighbor (最短距离法)若用最短距离法将这些地区分为 剩余地区为一类。3类,则9 (上海)独自为一类,1 (北京)独自为一类,4. furthest neighbor(最远距离

27、法)矗隔14拨孽3蚌葬111122223322432253226222t222e322943110222111111222213312142221532216322成集成员若用最远距离法将这些地区分为 3类,则9 (上海)独自为一类,1 (北京) 和11 (浙江)为一类,剩余地区为一类。5.centroid cluster(重心法)群集施员7. ward method (离差平方和)若用重心法将这些地区分为3类,则9 (上海)独自为一类,1 (北京)和 11 (浙江)为一类,剩余地区为一类。6. median cluster(中位数距离)caseltahel若用中位数距离法将这些地区分为010

28、num为一类,剩余地区为一类。军加4h隼3群第1111232323224332563327 a2229a12110?22111111222213222142221533216332群集成员3类,则9 (上海),1 (北京)和11 (浙江)为一类,2若用离差平方和法将这些地区分为(天津)、6 (辽宁)、7 (吉林)、10 (江苏)、12 (安徽)、13 (福建)和14 (江西)为一类, 剩余地区为一类。5.10根据上题数据通过 sps斑计分析软件进行快速聚类运算,并与系统聚类分析结果进行比较。解:快速聚类运算即 k均值法聚类,具体步骤同 5.8,聚类结果如下:宝第弊距离1146.7512122,

29、9203322,4804316.ss45313,3300115.2557126,265837.51392,00010114,59811117,98612319,50113125,91214325,20315319,20116310 483聚类成员123xi155 77221 1111 7.1 6x232.7938.6425.41x313.9612.6311.40皿36.15115.6519.40k533.3350 8221 .s9油5.595 894.23最城果类中心制 17.00021.0003津卯口曲16.000.000每个器类中的案阿幼聚类的结果为9 (上海)独自为一类,1 (北京)、2

30、 (天津)、6 (辽宁)、7 (吉林)、10 (江 苏)、11 (浙江)、13 (福建)和14 (江西)为一类,剩余地区为一类。5.11下表是2003年我国省会城市和计划单列市的主要经济指标:人均gdpx1 (元)、人均工业产值x2 (元)、客运总量x3 (万人)、货运总量x4 (万吨)、地方财政预算内收入 x5 (亿元)、固定资产投资总额 x6 (亿元)、在岗职工占总人口的比例 x7(%)、在岗职工人均 工资额x8 (元)、城乡居民年底储蓄余额 x9 (亿元)。试通过统计分析软件进行系统聚类分析,并比较何种方法与人们观察到的实际情况较接近。城市xix2x3x4xx6x7xx9北京318863

31、31683052030671593200037.8253126441天津264334373235073467920593418.8186481825石家庄15134131591184310008494169.5123061044太原15752158312975152483319722.812679660呼和浩特1899111257350841552118213.514116255沈阳23268154466612146368155714.8149611423大连2914527615110012108111140714.7175601310长春18630210456999108924629412.

32、513870831哈尔滨148257561645895187642317.7124511154上海4658677083721263861899227421.0273056055南京2754743853167901480513679415.4221901134杭州3266749823213491681515071711.8246671466宁波3254347904249381379713955510.9236911060合肥106211171460344641362458.313901359福州2228121310968082506737611.815053876厦门53590931264441

33、30557023838.619024397南昌142219205572844543121011.013913483济南23437226345810143547642913.516027758青岛2470535506146663055312054814.515335908郑州16674140231070978476637312.7135381048武汉212781708311882166108062317.4137301286长沙15446887310609106316043410.016987705广州48220554042975128859275108925.1288053727深圳1918

34、3834751910989679329187569.6310532199甫丁8176339070165893361708.313171451海口1644214553132843304129916.514819284重庆71905076582903245016211876.5124401897成都17914928972793287989078811.9152741494贵阳11046103501851153184023115.812181345昆明16215116015126123386034214.614255709西安1314089131141393926544615.9135051211兰

35、州1445917136220955812120318.013489468西宁706656052788203787610.114629175银川1178711013214621271213421.913497193乌鲁木齐22508171372188127544118026.116509420甫丁31886331683052030671593200037.8253126441海口264334373235073467920593418.8186481825资料来源:中国统计年鉴 2004解:用spss对37个地区聚类分析的步骤如5.8题,不同的方法在第 4个步骤的method子对话框中选择不同的 cluster method。i.between-group inkage(组间平均数连接距离)1p - 1 36-12 13 -j j -14 -5 -358-151021-号 25-33-2b 目 3 口 一320-2231-14if -34-532-2126e1c:243类,则24从上面的树形图可以直观地观察到,若用组间平均数连接距离将这些地区分为 (深圳)独自为一类,10 (上海)和16 (厦门)为一类,剩余地区为一类。2 .within-group linkage (组内平均连接距离)27 (重庆)和若用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论