版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、含绝对值的一次方程1.含绝对值的一次方程的解法(1)形如ax +b =c(a 0)型的绝对值方程的解法:当c0时,原方程变为ax +b =cc ax+b =-c,解得x =zb或x= cb . aa(2)形如ax+b =cx+d (ac #0)型的绝对值方程的解法:根据绝对值的非负性可知cx+d 0,求出x的取值范围;根据绝对值的定义将原方程化为两个方程ax+b =cx + d和ax + b =-(cx + d);分另解方程 ax+b =cx+d 和 ax+b =(cx+d);将求得的解代入cx+d 0检验,舍去不合条件的解.(3)形如|ax+b =cx+d (ac #0)型的绝对值方程的解法
2、:根据绝对值的定义将原方程化为两个方程ax+b = cx + d或ax + b = _(cx + d);分另ij解方程 ax +b =cx +d 和 ax +b = -(cx +d).(4)形如x -ax-b =c(a a -b ;当c|ab时,此时方程无解;当 c = ab时,此时方程的解为ax|a -b时,分两种情况:当xa时,原方程的解为x=a+b-c ;当xb时,原方程的解为2a b cx =.2(5)形如ax+b |cx+d =ex+f(ac#0)型的绝对值方程的解法: 找绝对值零点:令 ax +b =0,得x =x1 ,令cx十d| =0得x =x2 ; 零点分段讨论:不妨设为,将
3、数轴分为三个区段,即x x1 ;x1 mxx2 ;分段求解方程:在每一个区段内去掉绝对值符号,求解方程并检验,舍去不在区段内的解.(6)形如|ax +b +cx+d =ex+f (a #0)型的绝对值方程的解法:解法一:由内而外去绝对值符号:按照零点分段讨论的方式,由内而外逐层去掉绝对值符号,解方程并检验,舍去不符合条件的解.解法二:由外而内去绝对值符号:根据绝对值的非负性可知ex + f之0 ,求出x的取值范围;根据绝对值的定义将原方程化为两个绝对值方程ax+b =ex+ f -(cx + d)和ax +b| =-(ex + f) -(cx +d);解中的两个绝对值方程.直接求解1、方程|
4、5x+6 =6x-5的解是.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解 解:x=11提示:原方程5x+6= 土(6x-5)或从5x+6 0、5x+60讨论.2、解方程:x- 3x+1=4;(天津市竞赛题)思路点拨从内向外,根据绝对值定义f质简化方程.解:x=- 5或x=3 提示:原方程化为x- 3x+1=4或x- | 3x+1 =-4423、解下列方程:(1) x+3 - x-1=x+1;( 北京市“迎春杯”竞赛题)(2) x-1+ x-5=4.(“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,
5、采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3 wx1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为 x=-5,-1,3.(2) 提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1 wxw 5,此即为原方程的解.4、方程3( x -1)= 凶+1的解是;方程| 3x-1= 2x+1的解是 .54、 2 或 075、已知 3990x+1995 =1995,那么 x=5、0 或-16、已知 | x
6、=x+2,那么 19x99+3x+27 的值为.6、.57、若 2000x+2000 =20 x 2000,则 x 等于().a.20或-21b.-20 或 21c.-19 或21d.19 或-21(2001年重庆市竞赛题)7、d8、解下列方程:(1)3x-5+4 =8;(2)4x-3 -2=3x+4;(3) x- 2x+1=3;(4)2x-1+ x-2= x+1 .8、x=3 或 x=1;3(2)x=9 或 x=- 3 ;7(3)x=- 4 或 x=2;3(4)提示:分x-1、-1wxl、? - x2四种情况分别去掉绝对值符号解方程,22,一, 1当考虑到1wxw2时,?原方程化为(2x-1
7、)-(x-2)=x+1, 即1=1,这是一个恒等式,说明凡2是满足1wxw 2的x值都是方程的解.29、方程5x+6 =6x5的解是(重庆市竞赛题)思路点拨没法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.讨论解的个数情况1、适合i 2a+7 + 2a-1=8的整数a的值的个数有().a.5b.4c.3d.2(第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的 解题途径.解:选b提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,?所以2a表示-7到1之间的偶数.注:形如ax +b| =cx + d的绝对值方程可变形为 a
8、x + b = 土(cx + d)且cx + d之0 , 才是原方程的根,否则必须舍去,故解绝对值时应检验.2、方程1 x-5+x-5=0的解的个数为().a.不确定 b. 无数个 c.2 个 d.3 个(“祖冲之杯”邀请赛试题 )2、b讨论解是否存在的情况1、已知关于x的方程1 x-2+ x-3=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨 方程解的情况取决于 a的情况,a与方程中常数2、3有依存关系,这种关系 决定了方程解的情况,因此,探求这种关系是解本例的关键,?运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表
9、示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1) 当a1时,原方程解为x=5a ;2(2) 当a=1时,原方程解为2wxw3;(3) 当a1时,原方程无解.2、使方程3 x+2 +2=0成立的未知数x的值是().a.-2b.0 c.2 d. 不存在32、d3、已知关于x的方程mx+2=2(m-x)的解满足| x- |-1=0,则m的值是().2a.10 或2b.10或-255年山东省竞赛题)c.-10 或2d.-10 或-2(2000553、a4、讨论方程| | x+3 -2 =k的解的情况.4、当k0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0k2时,
10、原方程有两解:x+3= 2(?2+k).5、当a满足什么条件时,关于x的方程1 x-2- x-5=a有一解?有无数多个解?无解?5、提示:由绝对值几何意义知:当-3a3或a-3时,方程无解.6、已知关于x的方程x-2 +x-3 = a,研究a存在的条件,对这个方程的解进行讨论.思路点拨 方程解的情况取决于 a的情况,a与方程中常数2、3有依存关系,这种关 系决定了方程解的情况, 因此,探求这种关系是解本例的关键. 运用分类讨它法或借助数轴 是探求这种关系的重要方法与工具,读者可从两个思路去解.注 本例给出了条件,但没有明确的结论,这是一种探索性数学问题, 它给我们留有自由 思考的余地和充分展示思维的广阔空间, 我们应从问题的要求出发,进行分析、收集和挖掘 题目提供的各种信息,进行全面研究.创新拓展题1、已知i x+2 1 + 1-x 1 =9- y-5- i 1+y ,求x+y的最大值与最小值.(第15届江苏省竞赛题)1、提示:已知等式可化为:i x+2 | + | x-1 + | y+1 + | y-5 =9,?由绝对值的几何意义知,当-2 wxw1且-1 wyw5时,上式成立,故当x=-2,y=-1 时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.2、(1)数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:聚焦体育新课标小学体育课运动负荷主观测评路径与调控策略研究
- 课题申报参考:教师教学洞察力的表现特征、生成机制及发展路径研究
- 包含维修条款的2025年度二手手机买卖合同范本3篇
- 二零二五版桉树种植与星海生态教育合作项目合同3篇
- 二零二五年度出国留学学费支付及管理合同3篇
- 二零二五年度煤炭运输合同范本:多式联运与综合物流服务协议4篇
- 二零二五版文化中心场地租赁协议书4篇
- 2025年度海洋工程聘用工程师及项目实施合同4篇
- 2025版充电桩安全风险评估与应急预案制定合同3篇
- 二零二五版智慧医疗路演投资合同范本4篇
- 2025年度版权授权协议:游戏角色形象设计与授权使用3篇
- 心肺复苏课件2024
- 《城镇燃气领域重大隐患判定指导手册》专题培训
- 湖南财政经济学院专升本管理学真题
- 全国身份证前六位、区号、邮编-编码大全
- 2024-2025学年福建省厦门市第一中学高一(上)适应性训练物理试卷(10月)(含答案)
- 《零售学第二版教学》课件
- 广东省珠海市香洲区2023-2024学年四年级下学期期末数学试卷
- 房地产行业职业生涯规划
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- MOOC 数字电路与系统-大连理工大学 中国大学慕课答案
评论
0/150
提交评论