版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学高考学问点总结2021最新 高考数学学问点 学习任何一门科目都离不开对学问点的总结,尤其是同学们在学习数学时,更要总结各个学问点,这样也便利同学们日后的复习。下面就是我给大家带来的高考数学学问点总结,期望能关怀到大家! 高考数学学问点总结1 1.数列的定义、分类与通项公式 (1)数列的定义: 数列:依据确定挨次排列的一列数. 数列的项:数列中的每一个数. (2)数列的分类: 分类标准类型满足条件 项数有穷数列项数有限 无穷数列项数无限 项与项间的大小关系递增数列an+1an其中nn _ 减数列an+1an p= 常数列an+1=an (3)数列的通项公式: 假如数列an的第n项与序号n之间
2、的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 假如已知数列an的首项(或前几项),且任一项an与它的前一项an-1(n2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式. 3.对数列概念的理解 (1)数列是按确定“挨次”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列挨次有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复消逝,而集合中的元素不能重复消逝,这也是数列与数集的区分. 4.数列的函数特征 数列是一个定义域为正整数集n_
3、或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(nn_. 高考数学学问点总结2 符合确定条件的动点所形成的图形,或者说,符合确定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性). 【轨迹方程】就是与几何轨迹对应的代数描述。 一、求动点的轨迹方程的基本步骤 建立适当的坐标系,设出动点m的坐标; 写出点m的集合; 列出方程=0; 化简方程为最简形
4、式; 检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 定义法:假如能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 相关点法:用动点q的坐标x,y表示相关点p的坐标x0、y0,然后代入点p的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点q轨迹方程,这种求轨迹方程的方法叫做相关点法。 参数法:当动点坐标x、y之间的直接关系难以找到时,往往先查找x、y与某一变数t的关系,
5、得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 _译法:求动点轨迹方程的一般步骤 建系建立适当的坐标系; 设点设轨迹上的任一点p(x,y); 列式列出动点p所满足的关系式; 代换依条件的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简; 证明证明所求方程即为符合条件的动点轨迹方程。 高考数学学问点总结3 (1)先看“充分条件和必要条件” 当命题“若p则q”为真时,可表示为p=q,则我们称p为q的充分条件,q是p的必要条件。这里
6、由p=q,得出p为q的充分条件是简洁理解的。 但为什么说q是p的必要条件呢? 事实上,与“p=q”等价的逆否命题是“非q=非p”。它的意思是:若q不成立,则p确定不成立。这就是说,q对于p是必不行少的,因而是必要的。 (2)再看“充要条件” 若有p=q,同时q=p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p=q 回忆一下学校学过的“等价于”这一概念;假如从命题a成立可以推出命题b成立,反过来,从命题b成立也可以推出命题a成立,那么称a等价于b,记作a=b。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,假如命题a等价于命题b,那么我们说命题a成立的充要条
7、件是命题b成立;同时有命题b成立的充要条件是命题a成立。 (3)定义与充要条件 数学中,只有a是b的充要条件时,才用a去定义b,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这确定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。 明显,一个定理假如有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。 “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。 (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。 高考数学学问点总结4 一
8、个推导 利用错位相减法推导等比数列的前n项和:sn=a1+a1q+a1q2+a1qn-1, 同乘q得:qsn=a1q+a1q2+a1q3+a1qn, 两式相减得(1-q)sn=a1-a1qn,sn=(q1). 两个防范 (1)由an+1=qan,q0并不能马上断言an为等比数列,还要验证a10. (2)在运用等比数列的前n项和公式时,必需留意对q=1与q1分类争辩,防止因忽视q=1这一特殊情形导致解题失误. 三种方法 等比数列的推断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n2且nn_,则an是等比数列. (2)中项公式法:在数列an中,a
9、n0且a=anan+2(nn_,则数列an是等比数列. (3)通项公式法:若数列通项公式可写成an=cqn(c,q均是不为0的常数,nn_,则an是等比数列. 注:前两种方法也可用来证明一个数列为等比数列. 高考数学学问点总结5 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不行缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,生疏公理、定理的内容和功能,通过对问题的分析与概括,把握立体几何中解决问题的规律-充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高规律思维力气和空间想象力气。 2.判定两个平面平行的方法: (1)依据定义-证明两平面没有公共点; (2)判定定理-证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 善待动物演讲稿范文(14篇)
- 金蝶KIS专业版仓存及生产管理-培训课件
- 油气行业安全生产监管-洞察分析
- 虚拟现实声源定位实现-洞察分析
- 虚拟货币交易风险管理-洞察分析
- 污水深度处理技术-洞察分析
- 向国旗敬礼国旗下讲话老师讲话稿范文(6篇)
- 医疗机器人与区块链结合的研究-洞察分析
- 关爱同学远离校园欺凌发言稿范文(5篇)
- 印刷行业智能化培训模式-洞察分析
- 强夯安全技术交底
- 企业财务风险防范的参考文献
- 2024年四川省水电投资经营集团普格电力有限公司招聘笔试参考题库含答案解析
- 2024届新高考物理冲刺复习:“正则动量”解决带电粒子在磁场中的运动问题
- PLC控制Y-△降压启动控制设计
- 趣识古文字(吉林联盟)智慧树知到期末考试答案2024年
- 汕头市中小学教学研究中心招聘专职教研员笔试真题2023
- 2024年国家粮食和物资储备局直属事业单位招聘笔试参考题库附带答案详解
- 无纺布行业的分析
- 2024届重庆市西南大学附属中学高考生物试题模拟题及解析附答案
- 算力互助与资源优化调度
评论
0/150
提交评论