版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 利用二分法求方程的近似解利用二分法求方程的近似解 西安高级中学西安高级中学 耿昌瑞耿昌瑞 温故知新温故知新 假设函数假设函数f(x)在闭区间在闭区间a,b上的图像是延续曲线,上的图像是延续曲线, 并且并且 在闭区间在闭区间a,b端点的函数值符号相反,即端点的函数值符号相反,即 f(a)f(b)0,那么那么f(x)在在a,b)上至少有一个零点,上至少有一个零点, 即方程即方程f(x)=0在在(a,b)上至少有一个实数解。上至少有一个实数解。 判别零点存在的方法判别零点存在的方法勘根定理勘根定理 阐明:阐明:1.方程方程f(x)=0在区间在区间a,b)内有奇数个解,内有奇数个解, 那么那么f(a
2、)f(b)0. 2.假设方程假设方程f(x)=0在区间在区间(a,b)只需一解,只需一解, 那么必有那么必有f(a)f(b)0,f(5)0即即f(-1)f(5)0,f(5)0,即即 f(2)f(5)0,所以在区间所以在区间2,5内有方程的解,内有方程的解, 于是再取于是再取2,5的中点的中点3.5, 假设取到某个区间的中点假设取到某个区间的中点x0, 恰好使恰好使f(x0)=0, 那么那么x0就是就是 所求的一个解;假设区间所求的一个解;假设区间 中点的函数总不为中点的函数总不为0,那么,那么, 不断反复上述操作,不断反复上述操作, 动手实际动手实际 求方程求方程2x3+3x-3=0的一个实数
3、解,准确到的一个实数解,准确到0.01. 设计方案设计方案 进一步领会进一步领会 探求探求lgx=3-x的近似解的近似解(准确到准确到0.1) 小结 总结 分析分析 笼统概括笼统概括利用二分法求方程实数解的过程利用二分法求方程实数解的过程 选定初始区间选定初始区间 取区间的中点取区间的中点 中点函数值为中点函数值为0 0 M M N N 终了终了 是是 否否 是是 1.1.初始区间是一个两端初始区间是一个两端 函数值符号相反的区间函数值符号相反的区间 2.2.“M M的意思是的意思是 取新区间,其中取新区间,其中 一个端点是原区一个端点是原区 间端点,另一个间端点,另一个 端点是原区间的中点端
4、点是原区间的中点 3.3.“N N的意思是方程的意思是方程 的解满足要求的准确度。的解满足要求的准确度。 中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0中点函数值为中点函数值为0 0 是是是是 终了终了 是是 N N N N N N 作业:作业: 119页页B组第组第2题题 小结:小结: 2.2.二分法的运用:求方程近似解的过程二分法的运用:求方程近似解的过程 1. 1.二分法的原理二分法的原理 解:设解:设f(x)=lgx+x-3,设,设x0=m为函数的零点即方程为函数的零点即方程lgx=3-x的解的解. 用计算器计算,得用计算器计算,得 0 (1) (2)0,(3)0(2,3)ffx 0 (2) (2.5) 0, (3) 0(2.5,3)ffx 0 (3) (2.5) 0, (2.75) 0(2.5,2.75)ffx 0 (4) (2.5)0, (2.625)0(2.5,2.625)ffx 0 (5) (2.5625)0, (2.625)0(2.5625,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 爱国卫生月班会活动
- 2024二手物流设备买卖及仓储服务合同3篇
- 如何调节血脂水平
- 《奎屯天合精细化工》课件
- 社区护理外出培训
- 人教版道德与法治三年级下册《第二单元 我在这里长大》大单元 (5 我的家在这里)(计划二课时)(第一课时)(热爱这里的一草一木)教学设计2022课标
- 全程房地产项目2024年度管理顾问咨询合同
- 2024年度卫星通信技术与应用开发合同2篇
- 酒店厨房承包协议书范本
- 磁性护理工作总结
- 也是冬天也是春天:升级彩插版
- 广播电视编导专业大学生职业生涯规划书
- 2023年12月英语六级真题及参考答案
- Unit+5+The+Monarchs+Journey+Language+points+课件-【知识精讲精研】高中英语外研版(2019)必修第一册+
- 高考日语副助词默写单
- 高一政治学科期末考试质量分析报告(7篇)
- 项目立项增资申请书
- 中国近现代史纲要社会实践报告十二篇
- 小学期中表彰大会活动方案
- 基于单元主题意义开展的小学英语项目化学习 论文
- 万用表使用方法-完整版课件PPT
评论
0/150
提交评论