七年级数学教案:4.3简单的概率计算_第1页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、4.3简单的概率计算l 一、教学目标(一)知识目标1.在具体情景中进一步了解概率的意义,体会概率是描述不确定现象的数学模型.2.了解一类事件发生概率的计算方法,并能进行简单计算.3.能设计符合要求的简单概率模型.(二)能力目标1.体会事件发生的不确定性,建立初步的随机观念.2.进一步体会“数学就在我们身边”,发展学生“用数学”的意识和能力.(三)情感目标1.进一步培养学生公平、公正的态度,使学生形成正确的人生观.2.提高学生之间的合作交流能力和学习数学的兴趣.二、教学重难点(一)教学重点1.进一步体会概率是描述不确定现象的数学模型.2.了解另一类(几何概率)事件发生概率的计算方法,并能进行简单

2、计算.3.能设计符合要求的简单数学模型.(二)教学难点1.了解另一类(几何概率)事件发生概率的计算方法.2.设计符合要求的简单数学模型.三、教具准备投影片四张:第一张:(记作投影片4.3 a)第二张:议一议(记作投影片4.3 b;)第三张:例题(记作投影片4.3 c;)第四张:随堂练习(记作投影片4.3 d)四、教学过程.创设问题情景,引入新课师我手中有两个不透明的袋子,一个袋子中装有8个黑球,2个白球;另一个袋子里装有2个黑球,8个白球.这些球除颜色外完全相同.在哪一个袋子里随意摸出一球,摸到黑球的概率较大?为什么?生在第一个袋子里摸到黑球的概率较大.这是因为,在第一个袋子里,p(摸到黑球)

3、= = ;而在第二个袋子里,p(摸到黑球)= .师现在,我们把两个袋子换成两个房间卧室和书房,把袋子中的黑白球换成黑白相间的地板砖,示意图47如下:(出示投影片4.3 a)图47图47中的每一块方砖除颜色外完全相同,小猫分别在卧室和书房中自由地走来走去,并随意停留在某块方砖上.在哪个房间里,小猫停留在黑砖上的概率大呢?(板书课题:停留在黑砖上的概率).讲授新课讨论停留在黑砖上的概率1.议一议师我们首先观察卧室和书房的地板图,你会发现什么?生卧室中黑地板的面积大,书房中白色地板的面积大.生每块方砖除颜色不同外完全相同,小猫自由地走来走去,并随意停留在某块方砖上,具有随机性.师很好.这位同学已经能

4、用随机观念,去解释我们所研究的事件.由此可知小猫停留在任意一块方砖上的可能性是相同的.生老师,我知道了,卧室和书房面积是相等的,而卧室中黑砖的面积大于书房中黑砖的面积,故小猫在卧室里自由地走来走去,并随意停留在某块方砖上,其中停留在黑砖上的概率较大.师那么,小猫在卧室里自由地走来走去,停留在黑砖上的概率为多少呢?如何计算呢?下面我们看投影片4.3 b.师你是怎样想到计算小猫最终停留在黑色方砖上概率用 的.生我是这样想的,这16块方砖,就像16个小球(除颜色外完全相同),其中4块黑砖相当于4个黑球,12个白砖相当于12个白球,小猫随意在地板上自由地走来走去,相当于把这16个球在袋子中充分搅匀,而

5、最终小猫停留在黑砖上,相当于从袋子中随意摸出一球是黑球,因此我们推测p(小猫最终停留在黑砖上)= .师很好.有没有不同解释呢?生我们组是这样想的:小猫最终停留在黑砖上的概率,与面积大小有关系.此事件的概率等于小猫最终停留在黑砖上所有可能结果组成的图形面积即4块方砖的面积,除以小猫最终停留在方砖上的所有可能结果组成的图形即16块方砖的面积.所以p(小猫最终停留在黑砖上)= .师同学们的推测都是很有道理的.接下来我们来看课本p110两个问题.2.想一想(1)小猫在上图所示的地板上自由地走来走去,它最终停留在白色方砖上的概率是多少?(2)你同意(1)的结果与下面事件发生的概率相等吗?袋中有12个黑球

6、和4个白球,这些球除颜色外都相同,从中任意摸出一球是黑球.生(1)p(小猫最终停留在白色方砖上)= ;(2)这两个事件发生的概率是相同的,都是 .师你还能举出了一些不确定事件,使它们发生的概率也为 吗?(给同学们一定的思考的时间)生如上节课我们玩的摸球游戏,盒子中装有12个红球,4个白球,摸到红球的概率也是 .生例如,我手中有16张卡片,每张卡片上分别标有116这些数字,充分“洗 ”过后,随意抽出一张,抽到卡片上的数字不大于12的概率为 .生例如一个转盘被分成16个相等的扇形,其中12个扇形涂成红色,其余4个涂成黄色,让转盘自由转动,则指针落在红色区域的概率为 .师同学们举出了一些不确定事件,它们发生的概率都为 .其实这样的事件举不胜举.我们不难发

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论