数与形教学设计_第1页
数与形教学设计_第2页
数与形教学设计_第3页
数与形教学设计_第4页
数与形教学设计_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数与形教学设计教学目标:1、会利用图形寻找数中的规律,体会数形结合的优越性。2、会利用规律解决简单的数学问题。教学过程:课前小游戏:记忆大比拼师:听说六年级的同学记忆力特别好,今天我们来玩个记忆大比拼,有三组数据,看谁最先记住。记好的就举手!请看第一组:1至11的连续自然数。三、二、一停!为什么记得这样快?都是从1开始的连续自然数;请看第二组:为什么也记得这样快?都是从1开始的连续奇数;第三组,记住了吗?这组怎么这么难?没有规律就不容易记住。数学中有许多数字都藏着规律,有规律的数能记得很快。很喜欢同学们刚才表现出的自信、勇于发言,期待同学们接下来的表现,好!开始上课了。一、游戏激趣,引入课题同

2、学们喜欢玩游戏吧,老师也想和大家玩一玩。这里有8个气球,每个气球后都藏着一个数学算式,看哪个同学比老师算得还快,你可以用计算器算,也可以口算。这位同学坐得真端正,请你选一个?厉害吗,掌声在哪里,想不想像老师算得这样快,我也是从一个人那里学到的,认识吗?他是怎样利用图形寻找到数的规律的呢?今天咱们就沿着科学家的足迹,一起研究数与形,相信通过今天的学习,你们也能算得很快。二、探索正方形数的规律这是毕达哥拉斯当年研究的一组图形,请同学们用数学的眼光观察,这些小正方形都组成了一个(大正方形),每个图形分别是由多少个小正方形组成的。一起说:1,4 ,9 ,16.请看第四个图形,可以用怎样的算式表示小正方

3、形的个数?这个算式表示什么意思?那第3个图算式,第2 个呢?第1个呢?像1乘1可以简写1的平方,。伟大的毕达哥拉斯看到这副图,他列出了这样的算式1+3,你知道他为什么会这样列式吗?他是这样想的,1在哪里?3在哪里?在数学上科学家给这种看法取了一个名字叫拐弯看,第三个图拐弯看又可以怎样列式?指一指这些数字在哪里?第四个图呢?算式:请看第二个图,4表示?1+3也表示。2的平方也表示。那1+3=2的平方。像1、4,9,16这样能组成大正形的的数叫正方形数,可能写成几的平方,又叫做平方数,下一个正方形数是25,再下一个正方形数是36.图形能解释数的运算,照这样排列下去,第5、6、7、8个图形又能不能像

4、这样列式呢?让我们验证一下,请看活动表求。请同学来汇报一下你的图形和算式。通过同学们的验证,我们知道了一个正方形可以写成数字1,要想拼成一个更大的,就得拐3个小正方形,算式,想要拼成一个还要大的,得再拐5个,更更大的呢?拐7个,算式,更更更大的,拐9个,更更更大的,拐11个,再大的,拐13个,算式,通过图形列出的算式,你有什么发现?小组内交流一下。(从1开始连续的几个奇数)请看第二个算式,从1开始的2个连续奇数,就等于2的平方,。你又有什么发现?那从1开始的N个连续奇数就等于N的平方。现在知道老师为什么算得这样快了吧,一起算一算吧。这种方法巧妙吗?这么巧妙的方法我们是通过什么找到的?现在运用这

5、个规律算一算,相信你们算得比计算器都快。有一组更难的题,感接受挑战吗?读要求。有什么要提醒其它同学们的。你们不仅从1开始的连续奇数相加算得很快,变化一点也能很快的算出来。数的运算可以借助图形,图形中会不会藏着数的规律呢?三、探索三角形数的规律这是毕达哥拉斯当年研究的另一组图形,这是一个圆,个数是1,这是几个?猜一猜下一个图形是怎么排列的?个数是几?(给你握握手,你和科学家想的一样),(他可不是这样想的),第4个图形是怎么排列的,个数是几?加在哪里?第5个图形不让你们猜了,在草稿本上画一画,并写出小圆个数。说说你的画法和个数。你们画的图像一个什么图形?像1,3,6,10,15这样能组成大三角形的

6、数我们给他取个名字,三角形数,第6个三角形数是21,第7个呢,28,第10个呢?难着了吧,第15个呢?复杂的问题从简单开始,仔细观察黑板上的和你们自己画的图和数到底有什么规律,在小组内交流一下。每次增加一行。可以用算式表示,举例子,比如说,那第10个图的算式是多少,写一写,并算出得数,第15个呢?有什么感觉,有什么好办法总结一下?第几个就是从1开始的连续自然数加到几,第N个呢?就是(从1开始的连续自然数加到N)特殊的图形藏着特殊的数和算式的规律,这个规律我们还是借助什么找到的?研究到现在,大家的水平就和毕达哥拉斯的差不多了,接下来还不一个更难的,看同学们能不能超越他。四、长方形规律请读要求,个数都会数,一起说,和同桌的同学说一说蓝色和橙色小正方形个数都有什么规律。蓝色的个数第几个就是几橙色的个数是每次加2,那你能一口说出第10个图形橙色小正方形的个数吗?找一找蓝色小正方形和橙色小正方形之间有什么规律?哪里不变,哪里变了?两边的6个不变,每增加1个蓝色的小正方形,橙色的个数就增加2个,为什么增加2个?要包围住,看来这个题用的是围战术。不变的在哪里,不看不变的,橙色个数是蓝色个数的两倍,再加上不变的,比如说第2 个图,第3个图,用一句话概括。我们运用这个规律来解决问题,一起说。这个规律解决问题就容易吗?我们也

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论