




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 WKB Reading Materials: 曾谨言,量子力学(曾谨言,量子力学(II)第三版,)第三版,2.4 苏铷铿,苏铷铿,量子力学量子力学 第三讲第三讲 2 bound-state e Its principal nergies applications for us will be in calculating and through potentunneling ratetial basrriers. The WKB approximation V (K.E.P.E.) E 1. Classical region ( ), with 2) ) ( ( / ikx xAekm E
2、 EV V 2. Nonclassical region () (tunneli ( ), with 2 () ng regio / n) x xAem EV VE 3. Turning point ()EV In U.S. its WKB (Wentzel, Kramers, Brillouin) In Holland its KWB In France its BWK In England its JWKB (for Jeffreys) constant& constanAt lo:tcal VAk or constant& constanAt lo:tcal VAk or 3 Class
3、ical region 22 2 22 22 2 2 ( ) ( ) 2 , where ( )2( ) ( ): amplitude In general: ( ), where ( ): phas ( The Schrodinger equation Substituting (2) into (1 ) e ( ) ) 2 xi A d V xE m dx dp p xm EV x dx A x xe x p A x iAiAA 2 2 2 2 2 2 ( ) 2 Putting the solutio ()0 ( ) 1 ( ) ( ) ( ) ( )( ) ns to (2) i p
4、x dx A C A A p AA p x dx CC xex p xp x If ( ) is not a constant, but instead varies very slowly on a distance scale of , then it is reasonable to suppose that remains practically sinusoidal, except that twave WKB leng methods: he and thampli V x 2 2 2 change slowly with . Both ( ) tude and x Ap A .
5、(2) . (1) 4 Example for Classical region ( )( ) 12 12 0 2 1 ( ) ( ) 11 ( )sin ( )cos ( ) , with ( )( ) ( ) some specified function, if 0, : ( ) , otherwise. (0), (0)00 ixix x xC eC e p x xCxCxxp x dx p x xa BCV x C 222 2 00 If ( )0 at 0 , putting the solutions to (3) (4) 2 ( )sin ( )0( ) (1,2,3, .)
6、( )2( ) ( ). ( )sin . () . 2 . aa n n n n V xxa pan n aaann np x dxm EV xdx x E xx aa n E ma . (3) . (4) E E 5 Example,potential for harmonic oscillator, how about the energy for this system? 22 1 ( ) 2 V xx The coordinate of Turning points: 22 2 2 1 (42) 2 2/ . . 2/ (43) xE xE i ebaE 1 22 E/=() (44
7、) 2 a b pdxpdxnh 1 E=() (45) 2 n 6 Nonclassical (tunneling) region 1 ( ) Keeping the same definition of ( ), it is now not real but . A similar set of manipulations leads to the solution: ( im ) ( ) aginary p x dx p x C xe p x 00 0 11 ( )( ) 1 ( ) 2 2 2 0 ( ), whth 2/ ( ) ( ) ( )( At 0: At : At tunn
8、eling region (0): . Tran ) 1 , with ( )s Ex missio ample pr no xx a ikxikx ikx p x dxp x dx p x dx a xAeBekmE xFe CD xee p xp x x xa x F e A F Tep x dx A a bability 7 Gamows theory of alpha decay repulsive electr nuclea ice fo r r f c orce e 2 02 12 4r E Ze 2 1 22 11 2 2 2 2 2 0 12 1 21212 2 21 2 12
9、 1 , with ( ), ( )2( ) 1122 21 4 2 sin() , where let sin 2 Typically, 2 2 2 r r rr rr F Tep x dx p xm V xE A rZemE mE drdr rr rmE rr rrrru r mE rr rrr 2 1/2 1 0 121 2 1/2 2 0 2 1.98 MeV 4 , where 4 1.49 fm 4 em K Z KKZr E em K An alpha particle contain Two protons & neutrons unknown 8 1 1 2 1 Averag
10、e velocity of alpha particle: 2 Average time between with the : Frequency of collisions: 2 The probability of escape, per unit time: 2 The lifetime of the pa collisions rent nu wall v r v v r v e r 2 1 2 cleus: r e v 238236 9 6 10 yrs UU 10 note: 1 MeV= 9.7 10 J/molE 9 The connection formulas ( ) 1
11、( ) WKB approximation: ( ) for Classical region ( ) ( ) for Nonclassical region ( ) i p x dx p x dx C xe p x C xe p x 00 00 ( )( ) 11 ( )( ) if 0 1 , ( ) ( ) 1 , ( ) if 0 xx xx ii p x dxp x dx p x dxp x dx AeBe p x x CeDe p x x x ( )2 ( )0(if0) p xm EV xxx 10 Patching wave function . ( . ) (0) strai
12、ght line equ ation V xEVx yabx 2 2 2 1/32 3 22 2 2 (0) 2 2 , where (0 Directly solved by the Schrodinger eqat ) let . Airys equa ion tio S : olution n ( )( s ) p pp p p p p p d EVxE m dx d m xV dx zx d z dz abAi zBi z 11 Airy function: 3/ 23/ 2 3/23/2 1/4 22 ()() 33 1 1 /4 1 22 Solutions 122 sin()co
13、s(), 3434() ( ) 1 2, 2( ( )( ) if 0 ) if p p xx Ai zBiab xx x x z x ee x a bx b a 0 12 00 0 3/ 23/ ( )( ) 1 ( ) 22 ()() 33 3/41/4 1 , ( ) ( ) 1 , ( ) 1 () ( Indirectly solved by WKB approximation: if 0 i0 ) f xx x ii p x dxp x dx p x dx ixix AeBe p x x De p x AeBe x x x x 2 3/ 2 2( ) 3 3/41/4 , 1 if
14、 , 0 if 0 x x D x x 1/3 3/2 2 0 3/2 3/23/2 00 2 ( )2 ()2 (0) ), where (0) 2 ( )(), if 0 3 2 (if ) 3 0(), x xx m p xm EVm EEVxxV p x dxx p x dxxdxx x x 13 2 2 2 2 21 sin( ) For turning poin , if 4( ) ( ) 1 ex t region: p( ), if ( ) x x p x x D p x dxxx p x x D p x dxxx p x Connection formulas ( ) 1 ( ) for Classical WKB approximation: ( ) ( ) ( ) ( region for Nonclassical region ) i p x dx p x dx D xe p x D xe p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论