版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022届高考数学统考一轮复习 第10章 计数原理、概率、随机变量及其分布 第4节 古典概型与几何概型教案 理 新人教版2022届高考数学统考一轮复习 第10章 计数原理、概率、随机变量及其分布 第4节 古典概型与几何概型教案 理 新人教版年级:姓名:古典概型与几何概型考试要求1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用随机模拟的方法估计概率.4.了解几何概型的意义1基本事件的特点(1)任何两个基本事件是互斥的(2)任何事件(除不可能事件)都可以表示成基本事件的和2古典概型的特点3古典概型的概率计算公式p(a).4几何
2、概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型5几何概型的两个基本特点6几何概型的概率公式p(a).一、易错易误辨析(正确的打“”,错误的打“”)(1)随机模拟方法是以事件发生的频率估计概率()(2)从区间1,10内任取一个数,取到1的概率是.()(3)概率为0的事件一定是不可能事件()(4)从市场上出售的标准为5005 g的袋装食盐中任取一袋测其重量,属于古典概型()答案(1)(2)(3)(4)二、教材习题衍生1一枚硬币连掷2次,只有一次出现正面的概率为()a b c dd一枚硬币连掷2次可能出现(正,正)、(反,
3、反)、(正,反)、(反,正)四种情况,只有一次出现正面的情况有两种,故p.2某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是()a b c dc试验的全部结果构成的区域长度为5,所求事件的区域长度为2,故所求概率为p.3袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为()a b c da从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为p.4同时掷两个骰子,向上点数不相同的概率为 掷两个骰子一次,向上的点数共6636(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率p1. 考点一简单的古典概型
4、用公式法求古典概型的概率就是用所求事件a所含的基本事件个数除以基本事件空间所含的基本事件个数求解事件a发生的概率p(a)解题的关键如下:定型,即根据古典概型的特点有限性与等可能性,确定所求概率模型为古典概型求量,利用列举法、排列组合等方法求出基本事件空间及事件a所含的基本事件数求值,代入公式p(a)求值典例1(1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是()a b c d(2)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的
5、数大于第二张卡片上的数的概率为()a b c d(3)(2019全国卷)我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()a b c d(1)d(2)d(3)a(1)用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)乙获得“手气最佳”的所有不同
6、的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2)根据古典概型的概率计算公式,得乙获得“手气最佳”的概率p.(2)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,所求概率p.故选d(3)由6个爻组成的重卦种数为2664,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为c20.根据古典概型的概率计算公式得,所求概率p.故选a点评:求基本事件的个数时,应注意其顺序性1将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为(
7、)a b c dc将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有c种放法,甲盒中恰好有3个小球有c种放法,结合古典概型的概率计算公式得所求概率为.故选c2已知a0,1,2,b1,1,3,5,则函数f (x)ax22bx在区间(1,)上为增函数的概率是()a b c daa0,1,2,b1,1,3,5,基本事件总数n3412.函数f (x)ax22bx在区间(1,)上为增函数,当a0时,f (x)2bx,符合条件的只有(0,1),即a0,b1;当a0时,需要满足1,符合条件的有(1,1),(1,1),(2,1),(2,1),共4种函数f (x)ax22bx在区间(
8、1,)上为增函数的概率是p. 考点二古典概型与统计的综合 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,其解题流程为:典例2某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图(注:分组区间为60,70),70,80),80,90),90,100)(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率解(1)由题可得,男生优秀人数为10
9、0(0.010.02)1030,女生优秀人数为100(0.0150.03)1045.(2)因为样本容量与总体中的个体数的比是,所以样本中包含的男生人数为302,女生人数为453.则从5人中任意选取2人共有c10种,抽取的2人中没有一名男生有c3种,则至少有一名男生有cc7种故至少有一名男生的概率为p,即选取的2人中至少有一名男生的概率为.点评:有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键(2019天津高考)2019年,我国施行个人所得税专项附
10、加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为a,b,c,d,e,f.享受情况如下表,其中“”表示享受,“”表示不享受现从这6人中随机抽取2人接受采访员工项目abcdef子女教育继续教育大病医疗住房贷款利息住房租金赡养老人()试用所给字母列举出所有可能的抽取结果;()设m为事件“抽取的2人享受的专项附加扣除至少
11、有一项相同”,求事件m发生的概率解(1)由已知得老、中、青员工人数之比为6910,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人(2)()从已知的6人中随机抽取2人的所有可能结果为a,b,a,c,a,d,a,e,a,f,b,c,b,d,b,e,b,f,c,d,c,e,c,f,d,e,d,f,e,f,共15种()由表格知,符合题意的所有可能结果为a,b,a,d,a,e,a,f,b,d,b,e,b,f,c,e,c,f,d,f,e,f,共11种所以,事件m发生的概率p(m). 考点三几何概型 度量几何法就是利用所求事件a与基本事件空间的几何度量之比求解事
12、件a发生的概率p(a)的方法解题的关键如下:定型,即根据几何概型的特点无限性与等可能性,确定所求概率模型为几何概型定类,根据事件中所选对象的个数或所在范围,确定所求事件的几何属性及其度量方式,确定类别长度、面积或体积等求量,利用平面几何、立体几何等相关知识求出构成基本事件空间及事件a的区域长度(面积或体积)求值,代入公式p(a)求值与长度、角度有关的几何概型 典例31在等腰rtabc中,直角顶点为c(1)在斜边ab上任取一点m,求|am|ac|的概率;(2)在acb的内部,以c为端点任作一条射线cm,与线段ab交于点m,求|am|ac|的概率解(1)如图所示,在ab上取一点c,使|ac|ac|
13、,连接cc.由题意,知|ab|ac|.由于点m是在斜边ab上任取的,所以点m等可能分布在线段ab上,因此基本事件的区域应是线段ab所以p(|am|ac|).(2)由于在acb内以c为端点任作射线cm,所以cm等可能分布在acb内的任一位置(如图所示),因此基本事件的区域应是acb,所以p(|am|ac|).点评:当涉及射线的转动、扇形中有关落点区域的问题时,应以角度作为区域的度量来计算概率,切不可用线段的长度代替与面积有关的几何概型 典例32(1)从区间0,1随机抽取2n个数x1,x2,xn,y1,y2,yn,构成n个数对(x1,y1),(x2,y2),(xn,yn),其中两数的平方和小于1的
14、数对共有m个,则用随机模拟的方法得到的圆周率的近似值为()a b c d(2)甲、乙二人约定7:10在某处会面,甲在7:007:20内某一时刻随机到达,乙在7:057:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是()a b c d(1)c(2)c(1)因为x1,x2,xn,y1,y2,yn都在区间0,1内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),(xn,yn)都在正方形oabc内(包括边界),如图所示若两数的平方和小于1,则对应的数对在扇形oac内(不包括扇形圆弧上的点所对应的数对),故在扇形oac内的数对有m个用随机模拟的方法可得,即,所以.(2)建立平面直角坐标
15、系如图,x,y分别表示甲、乙二人到达的时刻,则坐标系中每个点(x,y)可对应甲、乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是其构成的区域为如图阴影部分,则所求的概率p. 点评:(1)求解由两个量决定的概率问题时,通过建立坐标系,借助于纵、横坐标关系产生的区域面积,得到问题的结论,我们称此类问题为“约会型”概率问题“约会型”概率问题的求解关键在于合理、恰当地引入变量,再将具体问题“数学化”,通过建立数学模型,得出结论(2)几何概型与平面几何的交汇问题要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率与体积有关的几何概型
16、典例33已知在四棱锥pabcd中,pa底面abcd,底面abcd是正方形,paab2,现在该四棱锥内部或表面任取一点o,则四棱锥oabcd的体积不小于的概率为 当四棱锥oabcd的体积为时,设o到平面abcd的距离为h,则22h,解得h.如图所示,在四棱锥pabcd内作平面efgh平行于底面abcd,且平面efgh与底面abcd的距离为.因为pa底面abcd,且pa2,所以,所以四棱锥oabcd的体积不小于的概率p3.点评:求解本题的关键是找到四棱锥oabcd的体积为时的点o对应的平面efgh ,然后借助比例关系计算体积比例,进而得出概率值1已知正三棱锥sabc的底面边长为4,高为3,在正三棱
17、锥内任取一点p,使得vpabcvsabc的概率是()a b c da由题意知,当点p在三棱锥的中截面abc以下时,满足vpabcvsabc,又v锥sabcv锥sabcv锥sabc事件“vpabcvsabc”的概率p.2已知实数m0,1,n0,2,则关于x的一元二次方程4x24mxn22n0有实数根的概率是()a1 b c d1a方程有实数根,即16m216(n22n)0,m2n22n0,m2(n1)21,画出图形如图所示,长方形面积为2,半圆的面积为,故概率为1.3如图,四边形abcd为矩形,ab,bc1,以a为圆心,1为半径作四分之一个圆弧,在dab内任作射线ap,则射线ap与线段bc有公共
18、点的概率为 因为在dab内任作射线ap,所以它的所有等可能事件所在的区域是dab,当射线ap与线段bc有公共点时,射线ap落在cab内,则区域为cab,所以射线ap与线段bc有公共点的概率为.数学文化2概率与数学文化数学文化是国家文化素质教育的重要组成部分,纵观近几年高考,概率统计部分以数学文化为背景的问题,层出不穷,让人耳目一新同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开下面通过对典型例题的剖析,让同学们增加对数学文化的认识,进而加深对数学文化的理解,提升数学核心素养.以古代文化经典为素材(2017全国卷)如图,正方形abcd内的图形来自中国古代的太极图正方形内切圆中的黑色部分和
19、白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()a b c db不妨设正方形abcd的边长为2,则正方形内切圆的半径为1,可得s正方形4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得s黑s白s圆,所以由几何概型知,所求概率p.故选b评析以易经八卦中的太极图为载体,既丰富了数学文化的取材途径,又很好体现数学的美学特征,可将实际问题转化为数学中的几何概型问题,结合几何概型解答1中华文化博大精深,我国古代算书周髀算经中介绍了用统计概率得到圆周率的近似值的方法古代数学家用体现“外圆内方”文化的钱币(如图)做统计,现将其抽象成如图所示的图形,其中圆的半径
20、为2 cm,正方形的边长为1 cm,在圆内随机取点,若统计得到此点取自阴影部分的概率是p,则圆周率的近似值为()图图a b c da圆形钱币的半径为2 cm,面积为s圆224;正方形边长为1 cm,面积为s正方形121(cm2)在圆形内随机取一点,此点取自黑色部分的概率是p1,则.故选a2.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系若从5类元素中任选2类元素,则2类元素相生的概率为()a b c da金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、
21、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选a3.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中随机选取3个不同的数,其和等于15的概率是()a b c da先计算从四个阴数和五个阳数共9个数字中随机选取3个不同的数,总共有c种选法,再计算符合条件和等于15的三个数的种类,即可算出概率从四个阴数和五个阳数共9个数字中随机选取3个不同的数,总共有c84种选法,其和等于
22、15的三个数的种类共有8种,即:图形中各横,各列,对角线所在的三个数字之和均为15.故其和等于15的概率是:,故选a以数学名人为素材(2018全国卷)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()a b c dc不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有c种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率p,故选c评析以我国数学家陈景润在哥德巴赫猜想的研究中取
23、得的成果为载体,展现了我国数学家在数学领域中的地位,可将实际问题转化为数学中的古典概型问题,结合古典概型解答1(2020广东梅州一检)如图是古希腊数学家希波克拉底所研究的几何图形,此图由一个半圆和一个四分之一圆构成,两个阴影区域分别标记为a和m.在此图内任取一点,此点取自a区域的概率记为p(a),取自m区域的概率记为p(m),则()ap(a)p(m)bp(a)p(m)cp(a)p(m)dp(a)与p(m)的大小与对应的半径长度有关c设四分之一圆的半径为r,则图中半圆的半径为r.p(a),p(m),所以p(a)p(m)故选c2费马素数是法国大数学家费马命名的,形如21的素数(如:213)为费马素数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()a b c db在不超过30的正偶数中随机选取一数,基本事件总数n15,能表示为两个不同费马素数的和的只有835,20317,22517,共有3个则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024建筑施工企业管理人员劳动合同(参考模板)
- 校园铺子出租合同范例
- 灯具产品订购合同范例
- 2024版电影版权保护及维权服务合同
- 2024年度品牌授权与连锁经营知识产权合同
- 电杆运输合同范例
- 2024三类借款合同范本
- 2024年度租赁购买合同标的租赁物选择与购买价格
- 定制铝合金凉亭合同范例
- 硚口区办公家具合同范例
- 燃气锅炉安装施工方案完整版
- 2023年人民法院聘用书记员考试试题及答案
- 学校-“1530”安全教育实施方案
- 初中地理-《世界人口的增长和分布》教学课件设计
- 国家安全教育智慧树知到答案章节测试2023年
- 社区卫生服务中心工作制度及服务规范
- 初中语文人教七年级下册冉玥《驿路梨花》微课教案设计
- 助产相关法律法规
- 广东省2023年1月普通高中学业水平合格性考试数学试题
- 人教版版中国历史八年级上册知识点归纳梳理
- 职业健康整改计划
评论
0/150
提交评论