机械原理大作业平面连杆机构报告1_第1页
机械原理大作业平面连杆机构报告1_第2页
机械原理大作业平面连杆机构报告1_第3页
机械原理大作业平面连杆机构报告1_第4页
机械原理大作业平面连杆机构报告1_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平面连杆机构的运动分析(题号:平面六杆机构)一、题目:计算平面连杆机构的运动学分析二、平面连杆机构的运动分析方程三、程序流程图四、计算源程序五、计算结果数据六、运动线图及分析七、体会及建议八、参考书一、 题目说明:1、题目简介:(1)如图所示平面六杆机构,设已知各构件的尺寸如下表一,又知原动件1以角速度为1rad/s沿逆时针方向回转,试求个从动件的角位移、角速度、及角加速度以及e点的位移、速度及加速度变化情况。abcdefg2345621xy11(2)已知其尺寸参数如下表所示:组号l1l2l3l4l5l6xgyg2-a26.5116.667.587.552.443.060153.541.72、

2、题目要求与成员组成及分工:(1)题目要求:两人一组计算出原动件从0到360时(计算点数n = 36)所要求的各运动变量的大小,并绘出运动曲线图以及e点的轨迹曲线,本组题号为:2a。二、题目分析:1、建立封闭图形:l1 + l2= l3+ l4l1 + l2= l5+ l6+ag2、机构运动分析:(1)角位移分析由图形封闭性得: 将上式化简可得:(2)角速度分析上式对时间求一阶导数,可得速度方程:化为矩阵形式为:(3)角加速度分析:矩阵对时间求一阶导数,可得加速度矩阵为:(4)e点的运动状态位移:速度:加速度:三、流程图:开始输入l1,l2,l3,l4,l5,l6,l2,xg,yg,用矢量法求解

3、角位移函数,并计算2,3,5,6,并计算xe,ye调用系数矩阵a子函数,计算a调用原动件位置参数矩阵b子程序,创建矩阵b调用求解角速度子程序,调用高斯消去法求解a*=b*1,得到2,3,5,6,再求解vex,vey调用求解角加速度子程序,计算b(k)= -da*+db*1,然后调用高斯消去法程序结a*a= b(k)求的a2,a3,a5,a6,再求出aex,aeyi=i+11=i*10i=0调用系数矩阵da,计算da调用系数矩阵db,计算dbi36结束输出结果n四、源程序#include#include#include#define pi 3.1415926#define n 4void sol

4、utionangle(double 18,double ); /*矢量法求角位移*/ void solutionspeed(double nn,double n,double 18,double ); /*角速度求解*/void solutionacceleration(double nn,double nn,double n,double 18);/*角加速度求解*/void gaussiane(double nn,double n,double n);/*高斯消去*/void foundmatrixa(double 18,double nn); /创建系数矩阵avoid foundmatr

5、ixb(double 18,double ,double n);/创建系数矩阵bvoid foundmatrixda(double 18,double nn);/创建矩阵davoid foundmatrixdb(double 18,double ,double n);/创建矩阵db/定义全局变量double l1=26.5,l2=111.6,l3=67.5,l4=87.5,l5=52.4,l6=43.0;double l2g=65.0,xg=153.5,yg=41.7,inang=60*pi/180,as1=1.0; /主函数void main() int i,j; file *fp; dou

6、ble shuju3618; double psvalue18,ann,dann,bn,dbn,ang1; /建立文件,并制表头 if(fp=fopen(filel,w)=null) printf(cannt open this file.n); exit(0); fprintf(fp,n the kinematic parameters of point 5n); fprintf(fp, ang2 ang3 ang5 ang6); fprintf(fp, as2 as3 as5 as6); fprintf(fp, aas2 aas3 aas5 aas6); fprintf(fp, xe ye

7、 vex vey aex aeyn); /计算数据并写入文件 for(i=0;i36;i+) ang1=i*pi/18; solutionangle(psvalue,ang1); foundmatrixb(psvalue,ang1,b); foundmatrixa(psvalue,a); solutionspeed(a,b,psvalue,ang1); foundmatrixda(psvalue,da); foundmatrixdb(psvalue,ang1,db); solutionacceleration(a,da,db,psvalue); for(j=0;j4;j+) shujuij=p

8、svaluej*180/pi; for(j=4;j18;j+) shujuij=psvaluej; fprintf(fp,n); for(j=0;j18;j+) fprintf(fp,%12.3f,shujuij); fclose(fp); /输出数据 for(i=0;i36;i+) ang1=i*pi/18; printf(n输出ang1=%d时的求解n,i*10); printf(angle angspeed angacceleration e:n); for(j=0;j4;j+) printf(%lft,shujuij); printf(n); for(j=4;j8;j+) printf

9、(%lft,shujuij); printf(n); for(j=8;j12;j+) printf(%lft,shujuij); printf(n); for(j=12;j18;j+) printf(%lft,shujuij); printf(n); /*矢量法求角位移*/ void solutionangle(double value18,double ang1) double xe,ye,a,b,c,phi,alpha,csn,ang5g,d2,d,ang2,ang3,ang5,ang6; a=2*l1*l3*sin(ang1); b=2*l3*(l1*cos(ang1)-l4); c=l

10、2*l2-l1*l1-l3*l3-l4*l4+2*l1*l4*cos(ang1); ang3=2*atan(a+sqrt(a*a+b*b-c*c)/(b-c); if(ang30)/限定ang3大小 ang3=2*atan(a-sqrt(a*a+b*b-c*c)/(b-c); ang2=asin(l3*sin(ang3)-l1*sin(ang1)/l2); xe=l4+l3*cos(ang3)+l2g*cos(ang2-inang); ye=l3*sin(ang3)+l2g*sin(ang2-inang); phi=atan2(yg-ye),(xg-xe); d2=(yg-ye)*(yg-ye

11、)+(xg-xe)*(xg-xe); d=sqrt(d2); csn=(l5*l5+d2-l6*l6)/(2.0*l5*d); alpha=atan2(sqrt(1.0-csn*csn),csn); ang5g=phi-alpha; ang5=ang5g-pi; ang6=atan2(ye+l5*sin(ang5g)-yg,xe+l5*cos(ang5g)-xg); value0=ang2;value1=ang3;value2=ang5;value3=ang6; value12=xe;value13=ye; /限定角度大小 for(int i=0;i2*pi) valuei-=2*pi; wh

12、ile(valuei0) valuei+=2*pi; /*角速度求解*/void solutionspeed(double a2nn,double b2n,double value18,double ang1) double ang2,ang3; ang2=value0;ang3=value1; double p2n; gaussiane(a2,b2,p2); value4=p20; value5=p21; value6=p22; value7=p23; value14=-l3*value5*sin(ang3)-l2g*value4*sin(ang2-inang); value15=l3*va

13、lue5*cos(ang3)+l2g*value4*cos(ang2-inang);/*角加速度求解*/void solutionacceleration(double a3nn,double da3nn,double db3n,double value18) int i,j; double ang2,ang3; ang2=value0;ang3=value1; double bkn=0; double p3n; for(i=0;in;i+) for(j=0;jn;j+) bki+=-da3ij*value4+j; bki+=db3i*as1; gaussiane(a3,bk,p3); val

14、ue8=p30; value9=p31; value10=p32; value11=p33; value16=-l3*value9*sin(ang3)-l3*value5*value5*cos(ang3)-l2g*value8*sin(ang2-inang)-l2g*value4*value4*cos(ang2-inang); value17=l3*value9*cos(ang3)-l3*value5*value5*sin(ang3)+l2g*value8*cos(ang2-inang)-l2g*value4*value4*sin(ang2-inang);/*高斯消去法解矩阵方程*/void

15、gaussiane(double a4nn,double b4n,double p4n) int i,j,k; double a4gnn,b4gn,t; for(i=0;in;i+) for(j=0;jn;j+) a4gij=a4ij; for(i=0;in;i+) b4gi=b4i; /使主对角线上的值尽可能大 if(a4g00a4g11) for(j=0;jn;j+) t=a4g0j;a4g0j=a4g1j;a4g1j=t; t=b4g0;b4g0=b4g1;b4g1=t; if(a4g22a4g33) for(j=0;jn;j+) t=a4g2j;a4g2j=a4g3j;a4g3j=t;

16、 t=b4g2;b4g2=b4g1;b4g3=t; /初等行变换 for(j=0;jn;j+) for(i=0;in;i+) if(i!=j) for(k=0;kn;k+) if(k!=j) a4gik-=a4gij/a4gjj*a4gjk; b4gi-=b4gj*a4gij/a4gjj; a4gij=0; for(i=0;in;i+) b4gi/=a4gii; p40=b4g0; p41=b4g1; p42=b4g2; p43=b4g3;/创建系数矩阵avoid foundmatrixa(double value518,double a5nn) double ang2,ang3,ang5,a

17、ng6; ang2=value50;ang3=value51;ang5=value52;ang6=value53; a500=-l2*sin(ang2);a501=l3*sin(ang3); a510=l2*cos(ang2);a511=-l3*cos(ang3); a520=-l2*sin(ang2)-l2g*sin(ang2-inang); a522=l5*sin(ang5);a523=l6*sin(ang6); a530=l2*cos(ang2)+l2g*cos(ang2-inang); a532=-l5*cos(ang5);a533=-l6*cos(ang6); a502=a503=a

18、512=a513=a521=a531=0;/创建系数矩阵bvoid foundmatrixb(double value618,double ang1,double b6n) b60=b62=l1*sin(ang1)*as1; b61=b63=-l1*cos(ang1)*as1;/创建矩阵davoid foundmatrixda(double value718,double da7nn) double ang2,ang3,ang5,ang6,as2,as3,as5,as6; ang2=value70;ang3=value71;ang5=value72;ang6=value73; as2=valu

19、e74;as3=value75;as5=value76;as6=value77; da700=-l2*as2*cos(ang2);da701=l3*as3*cos(ang3); da710=-l2*as2*sin(ang2);da711=l3*as3*sin(ang3); da720=as2*(-l2*cos(ang2)-l2g*cos(ang2-inang); da722=as5*l5*cos(ang5);da723=as6*l6*cos(ang6); da730=as2*(-l2*sin(ang2)-l2g*sin(ang2-inang); da732=as5*l5*sin(ang5);d

20、a733=as6*l6*sin(ang6); da702=da703=da712=da713=da721=da731=0;/创建矩阵dbvoid foundmatrixdb(double value818,double ang1,double db8n) db80=db82=l1*as1*cos(ang1); db81=db83=l1*as1*sin(ang1);五、计算结果及相关曲线图:a组:数据ang2ang3ang5ang631.41659.518274.84660.93327.44156.107267.10447.45924.31954.603261.9639.40422.07154.

21、839257.86535.15320.58756.482254.05733.43319.72559.178250.12233.16819.35662.621245.73333.419.3866.57240.47233.14519.72470.84233.65931.15820.33875.287224.17925.65621.18879.799210.78814.56622.25384.282193.987357.78523.51888.659177.339339.15824.97392.859164.018322.76426.6196.825154.479309.82228.423100.5

22、01147.803299.8730.402103.84142.952292.12232.533106.8139.123285.90534.799109.344135.751280.70837.173111.44132.448276.14539.622113.061128.955271.91442.105114.183125.1267.7844.569114.784120.784263.56446.952114.839115.961259.1549.182114.323110.623254.48651.174113.203104.779249.58852.829111.4498.434244.5

23、2354.036108.98691.547239.38654.673105.78983.996234.24154.607101.79775.52229.03653.70896.97265.573223.37851.86791.3252.837215.83149.03584.9333.036200.97845.2778.038355.866164.37140.79771.08313.857116.27636.01264.679288.38282.34as2as3as5as6-0.434-0.434-1.783-2.79-0.357-0.245-1.285-2.163-0.267-0.059-1.

24、053-1.748-0.1840.1-0.973-1.493-0.1150.223-0.984-1.365-0.060.311-1.059-1.344-0.0160.373-1.185-1.4180.0190.414-1.361-1.5850.0490.438-1.584-1.8420.0740.45-1.817-2.1510.0960.451-1.916-2.3430.1170.444-1.703-2.1750.1360.43-1.316-1.7620.1550.409-1.029-1.4090.1730.383-0.792-1.1320.190.352-0.561-0.8720.2060.

25、316-0.423-0.6890.220.276-0.352-0.5630.2320.232-0.328-0.4820.2420.186-0.336-0.4350.2470.138-0.365-0.4150.2480.087-0.407-0.4150.2440.033-0.457-0.430.232-0.023-0.508-0.4540.213-0.081-0.559-0.4790.184-0.143-0.609-0.50.145-0.21-0.66-0.5120.094-0.282-0.719-0.5150.031-0.359-0.795-0.515-0.046-0.44-0.908-0.5

26、32-0.136-0.524-1.1-0.62-0.234-0.605-1.507-0.964-0.332-0.67-2.666-2.29-0.417-0.702-4.566-4.892-0.471-0.68-4.309-5.087-0.477-0.589-2.745-3.75aas2aas3aas5aas60.3671.022.3860.3490.51.1092.4641.6170.5061.0051.9911.8270.440.8071.5731.6860.3560.61.3331.5140.2810.4251.2731.4460.2240.2871.3931.5490.1820.1821

27、.7371.9040.1540.12.4182.6710.1350.0363.5894.0930.122-0.0174.8165.810.114-0.0624.1985.5890.109-0.1011.8843.1630.105-0.1350.1671.1280.1-0.1661.6391.7220.095-0.1931.0331.2550.088-0.2180.5740.8690.077-0.2390.2540.5790.063-0.2570.0340.3590.044-0.272-0.1140.1880.019-0.286-0.210.053-0.01-0.299-0.267-0.05-0

28、.046-0.312-0.293-0.117-0.087-0.327-0.296-0.146-0.136-0.346-0.289-0.137-0.192-0.368-0.286-0.096-0.256-0.395-0.306-0.041-0.327-0.426-0.3740.001-0.403-0.456-0.519-0.021-0.478-0.479-0.812-0.219-0.542-0.478-1.491-0.937-0.573-0.429-3.607-3.591-0.542-0.297-10.853-13.3-0.415-0.049-3.427-7.758-0.1830.316-7.1

29、54-10.4790.1110.72-0.053-3.359xeyevexveyaexaey178.81827.07211.761-39.671-65.17650.76179.92521.0491.265-28.775-53.89670.231179.39717.111-6.912-16.411-40.0268.523177.64215.229-12.885-5.559-29.07454.703174.99215.007-17.2672.525-21.62237.987171.67715.947-20.567.817-16.36123.151167.86217.601-23.03410.801-12.09311.61163.67819.617-24.812.058-8.1583.298159.24521.74-25.88612.111-4.295-2.271154.68123.8-26.30111.395-0.475-5.609150.10325.693-26.05910.2583.224-7.148145.62127.373-25.198.9836.676-7.248141.34328.834-23.7517.7939.745-6.224137.3630.108-21.8186.85912.31-4.371133.7531.25-19.4896.29914.279-1.976

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论