长输管线泄漏监测系统原理及应用_第1页
长输管线泄漏监测系统原理及应用_第2页
长输管线泄漏监测系统原理及应用_第3页
长输管线泄漏监测系统原理及应用_第4页
长输管线泄漏监测系统原理及应用_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、长输管线泄漏监测系统原理及应用摘要:文章对国内外输油管道泄漏检测方法进行了分析,对油田输油管道防盗监测的方法进行了探讨。针对油田输油管道防盗监测问题,指出了油田输油管道防盗监测系统的关键技术是管道泄漏检测报警及泄漏点的精确定位,并介绍了华北油田输油管道泄漏监测系统的应用情况。关键词:输油 管道 泄漏 监测 防盗北京昊科航科技有限责任公司2012-9-24近年来,受利益的驱动不法分子在输油管线打孔盗油,加上管道腐蚀穿孔威胁,管道泄漏事件时有发生一旦引起大的火灾爆炸环保事故,后果不堪设想。为努力维护管道安全,已经投入了大量的人力物力,但形势仍十分严峻。采用合适的管道泄漏在线监测系统,则能够实时细致

2、了解管线输油工况变化,便于及时发现泄漏位置,以便及时发现泄漏,尽早采取相应的措施,将损失危险降到最小程度;同时减少了巡线压力,降低了职工劳动强度。因此,输油管道泄漏监测系统的研究与应用成为油田亟待解决的问题。先进的管道泄漏自动监测技术,可以及时发现泄漏,迅速采取措施,从而大大减少盗油案件发生,减少漏油损失,具有明显的经济效益和社会效益。1. 国内外输油管道泄漏监测技术的现状输油管道泄漏自动监测技术在国外得到了广泛的应用,美国等发达国家立法要求管道必须采取有效的泄漏监测系统。输油管道检漏方法主要有三类:生物方法、硬件方法和软件方法。1.1 生物方法这是一种传统的泄漏检测方法,主要是用人或经过训练

3、的动物(狗)沿管线行走查看管道附件的异常情况、闻管道中释放出的气味、听声音等,这种方法直接准确,但实时性差,耗费大量的人力。1.2 硬件方法主要有直观检测器、声学检测器、气体检测器、压力检测器等,直观检测器是利用温度传感器测定泄漏处的温度变化,如用沿管道铺设的多传感器电缆。声学检测器是当泄漏发生时流体流出管道会发出声音,声波按照管道内流体的物理性质决定的速度传播,声音检测器检测出这种波而发现泄漏。如美国休斯顿声学系统公司(ASI)根据此原理研制的声学检漏系统(wavealert),由多组传感器、译码器、无线发射器等组成,天线伸出地面和控制中心联系,这种方法受检测范围的限制必须沿管道安装很多声音

4、传感器。气体检测器则需使用便携式气体采样器沿管道行走,对泄漏的气体进行检测。1.3 软件方法它采用由SCADA系统提供的流量、压力、温度等数据,通过流量或压力变化、质量或体积平衡、动力模型和压力点分析软件的方法检测泄漏。国外公司非常重视输油管道的安全运行,管道泄漏监测技术比较成熟,并得到了广泛的应用。壳牌公司经过长期的研究开发生产出了一种商标名称为ATMOS Pine的新型管道泄漏检测系统,ATMOS Pine是基于统计分析原理而设计出来的,利用优化序列分析法(序列概率比试验法)测定管道进出口流量和压力总体行为变化以检测泄漏,同时兼有先进的图形识别功能。该系统能够检测出1.6kg/s的泄漏而不

5、发生误报警。目前国内油田长距离输油管道大都没有安装泄漏自动检测系统,主要靠人工沿管线巡视,管线运行数据靠人工读取,这种情况对管道的安全运行十分不利。我国长距离输油管道泄漏监测技术的研究从九十年代开始已有相关报道,但只是近两年才真正取得突破,在生产中发挥作用。清华大学自动化系、天津大学精密仪器学院、北京大学、石油大学等都在这一方面做过研究。如:中洛线(中原洛阳)濮阳首站到滑县段安装了天津大学研制的管道运行状态及泄漏监测系统(压力波法),东北管道局1993年应用清华大学研制的检漏系统(以负压波法为主,结合压力梯度法)进行了现场试验。2.管道泄漏监测技术难点管道泄漏监测说到家只有一个难题:就是“狼没

6、来系统却老是喊狼来了,狼真的来了他又不说话了”,为什么会这样?因为不知道什么是泄漏。HKH管道泄漏监测系统是一种量身定做的监测系统。因为管道工作过程千差万别,没有一个固定不变的模型可以套用。这种技术不是让所有不同工况的管道去适应一种固定的泄漏监测程序,而是让监测系统去学习管道的特征,让监测系统去适应去认识每一条具体的管道。这一特点决定了开发调试工作的难度很大,也决定了每一条管道最终都会有一套最适应其工艺特点的泄漏监测系统。这也是HKH系统适应各种管道泄漏监测而几乎不误报警的原因。3.管道泄漏监测系统各种方法及特点因监测方法应用原理不同使其在实际生产过程中的漏点监测、定位方法有较大差异。质量分析

7、法和体积分析法都是针对管道内流体的量来确定管道是否发生泄漏,其缺点是只有管道内的流体发生一定量的泄漏后才能确认管道出现泄漏工况。电磁监测法在管道测漏应用过程中其属于非在线实时监测,监测过程需要巡线人员携带信号监测器进行监测,其突出的特点是在管道未发生泄漏的情况下可以发现管道载阀位置,确定载阀或穿孔位置较为准确,并进行及时处理,其不足是:3.1 需要两名巡线人员操作监测器沿管线进行检测。3.2 电磁信号与管道的保温层、防腐层、绝缘层的破损情况以及载阀的现场情况有关,保温层、防腐层、绝缘层的破损情况越严重,电磁信号衰减越迅速,管道测漏的有效距离将缩短。3.3 有效检测距离较短,一般在5km左右,如

8、增加检测距离需要借助管线阴极保护桩或在管道上增加信号点。3.4 电磁监测法属于非实时监测,其不能实现在线实时管道泄漏监测。3.5而常规负压力波法,需人工设定一个压力差(流量差)值,利用管道压力差(流量差)进行判断,每年数百次以上误报警或漏报(小泄漏报不了警)。HKH系统是一套全自动实时管道监测系统网络,它与同类产品相比具有每年无误报警或几次误报警的低误报警率,无漏报,定位精度高,监测范围大,灵敏度高等优点。4. HKH管道泄漏监测系统介绍HKH系统是一套基于模糊神经网络的人工智能型管道泄漏监测系统软件。它克服了传统方法的不足之处,能够在多种复杂情况下对各种管道大小泄漏进行及时报警和准确定位。这

9、是学习型系统,它通过短期的试运行就可以对管道的情况有一个全面的了解,试运行后系统可以识别什么是管道正常工作(如站内进行启泵,停泵,调节输出量大小等操作),什么是泄漏。如果管道发生的是少量的渗油,只要到达瞬时流量的0.5%系统就会报警,以上这些都是系统自动完成的,不需要人工设定。HKH系统采用国家专利的误差消除技术,真正实现了泄漏量大于瞬时流量的0.5%时准确报警,不仅实现了同类技术做不到的自动报警、自动定位,而且比同类技术手工定位精度还要高的多。系统在大于3以上的泄漏时定位误差仅几十米,在泄漏量大于瞬时流量的0.5%时定位误差范围在+/-100m,而负压力波法在这个区间连泄漏都发现不了,更谈不

10、上定位了。负压力波法在较大泄漏条件下手工定位精度小于管道长度0.5% + 100m,也就是说管道越长误差就越大。HKH系统监测能力只与可检测的信号有关,与输油状态无关,只要有信号就行,在管道停输的状态下也可以报警,对监测管段长度几乎没有限制,目前已有单段130KM案例,而负压力波法的监测长度为每段小于60KM。HKH系统泄漏灵敏度指标为瞬时流量的0.5%,是自动实现的,没有设定值;负压力波法的指标为0.5%-5%,是人为设定的,必须大于压力波动值。由于管道压力波动都比较大,所以,实际使用灵敏度都在5以上,两者指标十倍之差。HKH是全自动系统,误报警或漏报警是系统问题,而负压力波法靠人工识别泄漏

11、排除误报警和定位,误报警或漏报警或者定位不准都是要由值班人员承担责任的。HKH系统安装方便,快捷,只需把所要监测管道两端的压力与流量信号通过很短的电缆线传到各自值班室即可,系统可以选择任何通讯方式自动进行数据交换。还可以对系统进行即时远程维护。5. HKH管道泄漏监测系统工作原理HKH管道泄漏监测报警定位系统是一种新颖的人工神经网络技术,是以模仿人类大脑拓扑结构开发的软件,将网络思想与模糊逻辑推理思想相结合,形成模糊神经网络。在这种网络中,在采集的流量压力数据中筛选出次声波的数据,将抽取的次声波数据样板分成若干个单元,各单元表示管道不同的工作状态,单元之间的连接权表示相应模糊概念之间的因果关系

12、。这种网络可以表达人们积累的知识,同时,它在工作中通过自学习又不断的积累和更新已有的知识。因为管道绝大多数时间是不会泄漏的,这就给网络学习提供了充分的条件,所以知道了什么是正常工作不该报警,也就识别出了什么是泄漏,因此,这种方法不需建立泄漏模型库,不必进行复杂费时的规则搜索、推理,而只须通过高速并行分布计算就可产生正确的输出结果。毫无疑问,网络结构模型是核心技术。目前,神经网络结构的设计全靠设计者的经验,由人事先确定,还没有一种系统的方法来确定网络结构。但是,采用遗传算法可以优化神经网络结构,从而使管道泄漏的识别能力得以极大的提高。下图中的蓝色线就是模糊神经网络的输出曲线,从图可以看出,尽管流

13、量、压力变化很大,在不发生泄漏时蓝色曲线几乎是一条直线,它只在极小的范围波动,一旦发生泄漏,它就立刻变大,其大小随着泄漏量波动,而与当时的管道压力、流量没有关系。若没有网络输出曲线作为判别依据,识别出这样的泄漏几乎是不可能的。HKH3.0版软件在各条管道应用中的突出表现,已经充分地证明了它的优越特性。6. HKH管道泄漏监测系统数据采集方案方案一:为了不影响原有的SCADA系统、提供系统的可靠性,计划采用在PLC数据采集系统前端加装信号分配器的方式将已存在的信号一分为二,一路供站内SCADA系统使用,另一路供管道泄漏监测系统分析使用。信号分配器本方案计划在中控室安装管道泄漏监控专用服务器1台,

14、Web服务器一台。在各沿线相关站分别安装HKH-GT数据采集系统、信号隔离设备。使现场一次仪表的信号通过隔离后进入HKH-GT数据采集系统,软件通过现有局域网与各站采集系统通信,读取数据,实现全网数据分析。方案二:泄漏监测系统也可以和SCADA系统的PLC进行直接通信,可采用OPC或MODBUS等协议通过只读的方式访问PLC内部寄存器地址,具体通信协议可根据现场PLC配备情况进行协商,这种方式较信号隔离的方式更为简洁、易于实现,且工期短,可靠性和安全性也不会受到任何影响。下面是通信原理图,供参考: 7.HKH管道泄漏监测系统在华北油田的应用华北油田采油五厂辛集采油作业区所属“晋95采油站荆二联”原油管道长度约4.2公里,管径114毫米,埋深1米。此管道日常输油时,仪表数据显示不稳定,输差时大时小,疑有安全隐患却找不到泄漏点。2011年初厂领导决定安装HKH泄漏检测系统,2011年9月,系统安装调试完毕,在试运行的两周内,便发生泄漏两次,由于报警及时、定位准确,成功抓获

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论