导数求切线方程-(有答案)-12_第1页
导数求切线方程-(有答案)-12_第2页
导数求切线方程-(有答案)-12_第3页
导数求切线方程-(有答案)-12_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 用导数求切线方程的四种类型 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点 P(X。,y。)及斜率,其求法为:设 P(X。,y。)是曲线y f (x)上的一点,则以 P的切点的切线 方程为:y y。 f (xo)(x Xo).若曲线y f(x)在点P(x。,f(x。)的切线平行于y轴(即导 数不存在)时,由切线定义知,切线方程为x X。. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数f (x),并代入点斜式方程即可. 例1曲线y x3 3x2 1在点(1, 1)处的切线方程为() A.y3x4B.y3x2 C

2、.y4x3D.y4x5 解:由f (x) 3x 6x则在点(1 1)处斜率k f (1)3,故所求的切线方程为 y ( 1)3(x 1),即 y 3x 2,因而选 B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线2x y 4 o的平行的抛物线 y 2 X的切线方程是( ) A. 2x y 3 o B. 2x y 3 o C. 2x y 1 o D. 2x y 1 o 解: 设P(xo, yo)为切点,则切点的斜率为 y lx xo2Xo2 . xo 1 . 由此得到切点(1,1).故切线方程为y 12(x 1),即2x y 10,故选D

3、. 评注:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y 2x b , 代入y x2,得x2 2x b 0 ,又因为 0 ,得b 1,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线y x3 2x上的点(1, 1)的切线方程. 解:设想P(x。,yo)为切点,则切线的斜率为y|xxo 3x。2 2 . 切线方程为 y yo (3xo2 2)(x Xo). 32 y (Xo2Xo) (3Xo2)(x Xo). 又知切线过点(1 1),把它代入上述方程,得1 (Xo3 2xo) (3xo22)

4、(1 Xo). 解得Xo 1,或X0-. 2 故所求切线方程为y (1 2)(3 2)(x 1),或y - 1-2 x -,即 842 x y 20,或 5x 4y 10 . 评注:可以发现直线5x 4y 10并不以(1, 1)为切点,实际上是经过了点(1, 1)且以 1 7 1,7为切点的直线这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用 2 8 待定切点法. 类型四:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 1 例4求过点(2,0)且与曲线y丄相切的直线方程. x 解:设P(x, y)为切点,则切线的斜率为 y良x 1 2 . 1 切线方

5、程为y y2 (x x),即y 1 X0 2 (X X0). X0 X0 X0 又已知切线过点(2,0),把它代入上述方程, 得 1 1 2 (2 怡) 1 解得 X01, y01,即 x y 20 . X0X0 Xo 评注:点(2,0)实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充 分反映出待定切点法的高效性. 例5已知函数y x3 3x,过点A(016)作曲线y f(x)的切线,求此切线方程. 解:曲线方程为 y x3 3x,点A(016)不在曲线上. 设切点为M (x0, y0), 则点M的坐标满足y0 x)3 3x0 . 因 f (x)3(x021), 故切线的方程为y y 3(x)2 1)(x怡). 点 A(0,16)在切线上,则有 16(X。3 3X0)3他2 1)(0 x). 化简得x038,解得x02 . 所以,切点为 M( 2,2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论