vrv空调系统特性与控制策略研究三_第1页
vrv空调系统特性与控制策略研究三_第2页
vrv空调系统特性与控制策略研究三_第3页
vrv空调系统特性与控制策略研究三_第4页
vrv空调系统特性与控制策略研究三_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、vrv 空调系统特性与控制策略研究(三) 摘要:通过对影响 VRV空调系统在热泵模式下室外机蒸发器 -压缩机模 块换热量和过热度的压缩机频率、室外空气温度、蒸发温度、蒸发器 风量的模拟分析,得出了不同参数对系统的影响和调节特性,提出了 压缩机频率控制冷剂流量,室外机风量控过热度的新的控制原理和方 法,这种方法更适合于 VRV空调系统。关键词: VRV空调系统压缩机冷凝器调节特性控制策略独立控制蒸发器 -压缩机联合调节特性与控制策略 1.引言 在本文(一)(二)的基础上,运用数值模拟的方法分析 VRV空调系统 在热泵模式下压缩机频率、室外温度、室外机风量、蒸发温度、冷凝 温度等对室外冷凝器换热的

2、影响,得出了室外机的调节特性,从而归 纳出了制冷模式下对室外机机更合理的控制策略 压缩机频率控制制 冷剂流量,室外机风量控制过冷度。2.调节特性2.1压缩机频率 -流量特性图 1 压缩机流量特性如图 1 所示,当空调系统制剂过热度 Tsu5,冷凝温度 Tc50时, 在不同蒸发温度 Te 下的压缩机流量特性曲线。在相同入口状态下,制 冷剂质量流量随压缩机频率的上升而增加;随着蒸发温度的升高,压 缩机的压缩比逐渐变小,压缩机入口制冷剂比容减小,其流量特性曲线的斜率逐渐增加2.2 风量-风温联合调节特性 在冷凝温度 Tc=40,过冷度 Tsb 5,蒸发温度 Te=-10,制冷剂流 量 Gr=0.01

3、5kg/s 情况下,蒸发器换热量 Q 与风量 G、风温 T的关系 曲线如图 2 所示。图 2Q-G-T关系曲线在某一固定风温下, 如 T0,当风量很小时, 蒸发器出口制冷剂为 两相状态,随着风量的增加,增大了管外空气侧的换热系数,还使空 气侧的换热能力增加,蒸发器出口制冷剂焓值逐渐增大,换热量也逐 渐上升。当风量增大到使蒸发器出口过热以后,风量的增加对换热量 的影响很小。在蒸发温度不变时,风温的上升,使得蒸发器内外侧换 热温差逐渐增大,因此使蒸发器出口过热所对应的风量也随风温的上 升而逐渐减小, 如 T15曲线所示, 在风量 G300m3/h 时,蒸发 器出口制冷剂就已经过热。2.3 风温-频

4、率联合调节特性在 Tc=40 ,Tsb5,Te-10, G1200m3/h 情况下,冷凝换热量Q 与压缩机频率 Fz、风温 T的关系曲线如图 3 所示。图 3Q-Fz-T关系曲线在某一确定的风温下,如 T -6,当压缩机频率很小时,制冷剂流 量也很小,在能够使蒸发器出口保持过热时,蒸发器换热量热量随压 缩机频率的增加而逐渐增加,当流量增加到蒸发器出口回液后,表明 蒸发器空气侧换热已经接近极限,制冷剂流量的增加会改善制冷剂侧 的换热系数,蒸发器换热量随压缩机频率上升的速度明显降低。在蒸 发温度不变时,风温的上升,使得蒸发器内外侧换热温差逐渐增大, 因此使蒸发器出口过热所对应的压缩机频率也随风温的

5、上升而逐渐上 升。如 T-9曲线所示,在频率 Fz=30Hz时,蒸发器出口就已经回 液,而 T -4与 T10时,Fz120Hz,蒸发器出口制冷剂仍为过 热。2.4 蒸发温度的影响在 Tc=40、 Tsb=5、T=10、 G=1200m3/h情况下,蒸发器换热量 与压缩机频率 Fz、蒸发温度 Te的关系曲线如图 4 所示。图 4Q-Fz-Te关系曲线 蒸发温度不仅影响到压缩机的制冷剂流量还影响到蒸发器内外侧的换 热温差,从图 4 中可以看出,在某一蒸发温度下,随着压缩机频率的 增加,通过蒸发器的制冷剂流量也增加,蒸发器的换热量一直增大; 当蒸发器出口制冷剂回液时,换热量随压缩机频率增加的速度明

6、显下 降。随着蒸发温度的下降,蒸发器内外侧换热温差增大;蒸发器出口 出现回液时,所对应的压缩机频率逐渐增加大,蒸发器的换热量也随 蒸发温度的下降而逐渐上升, 如图 4中的 Te28所示的各条曲线, 当蒸发温度下降到蒸发器出口不回液后,蒸发温度的下降所引起的制 冷剂流量下降是影响蒸发器换热的主要因素,所以换热量随蒸发温度 的下降而下降,如图 4 中的 Te 1-10的各条曲线。从以上分析可 以看出,对于固定的支路,蒸发温度有一个最优值,使得蒸发器在保 证出口过热的情况下换热量达到最大。2.5 风量 -频率联合调节特性当 Tc=40 ,Tsb=5,Te=0 ,T =10时,蒸发器换热量 Q 与压缩

7、机频率Fz、风量 G的关系曲线如图 5 所示。图 5Q-Fz-G关系曲线1.G 300m3/h2.G 400m3/h3.G 500m3/h4.G 600m3/h5.G 700m3/h6.G 800m3/h7.G 900m3/h8.G 1000m3/h9.G 1400m3/h在某一固定风量和压缩机频率很小的情况下,制冷剂流量很小,蒸发 器出口制冷剂为过热冷状态;随着频率的增加,制冷剂流量增大,换 热量逐渐增大;当流量增大到一定程度后,蒸发器出口制冷剂为两相 状态,流量的增加只能增加管内侧的换热系数,但管外侧空气换热已 接近极限,换热量只有少量增加。当压缩机频率不变即制冷剂流量不 变的情况下,当风

8、量很小时,蒸发器出口制冷剂为两相状态;当风量 增加后,蒸发器出口制冷剂的干度和焓值逐渐增大, 换热量逐渐增大; 当风量增大到蒸发器出口制冷剂过热后,尽管风量的增加会进一步加 大蒸发器出口制冷剂的过热度从而增加换热量,但由于过冷制冷剂与 空气只进行显热交换、换热量增加缓慢。因此在蒸发器出口过热的情 况下,风量的增加对蒸发器换热量影响很小,但随着风量的增加,蒸 发器出口出现回液时所对应的压缩机频率逐渐增大,而在回液后的换 热量仍会随着风量的增大而略有增大。vrv 空调系统特性与控制策略研究(三) :3.控制策略 在 SVRV空调系统中, 为满足室内蒸发器热负荷的需要, 要求室外机提 供一定状态和流

9、量的制冷剂,为了满足系统的稳定运行,在室外蒸发 器出口有一定的过热度要求;在热回收型 MVRV 空调系统中,多个室 内机可能同时制冷和制热,需要室外机提供一定的制冷剂,并且室外 机的换热量要和室内总负荷相匹配,都需要对室外机出口的制冷剂状 态和流量进行控制。本文着重研究了在室外换热器为蒸发器时的调节 特性与控制策略。以上对影响蒸发器换热的多个参数分别进行了分析,这些参数中蒸发 温度是表征制冷系统运行的状态参数,风温由实际运行时的室外空气 参数决定, 因此上述参数中只有压缩机频率与蒸发器风量是调节参数, 而用这两个参数要满足室内蒸发器侧负荷提出了的制冷剂流量和过热 度要求。蒸发器与压缩机联合工作状态方程为: 根据上述分析,在压缩机频率优先控制制冷剂流量的情况下,可以用 风量独立调节过冷度,即 B( t)为上三角矩阵,可以实现压缩机频率 与室外机风量对系统制冷剂流量和冷凝器出口制冷剂过冷度的解耦控 制。4.结论 根据上述分析,在热泵模式下,室外换热器为蒸发器时,室外机(蒸 发器压缩机)要为整个 VRV空调系统提供一定流量的制冷剂,而且 为了保证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论