版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本科生毕业设计(论文)外文翻译 a discussion on a limit theorem and its application abstract: this paper proposes that a limit theoremcan help to solve a specific limit problemof sum formula and that some limit of product formula can also be solved by exploiting the feature of logarithm function.keywords: limit the
2、orem; sumformula; product formulaincalculus,we will usually solve a specific limit problem of sum formulabut this sum formula cant sum directly, and it cant change into some kinds of functions integral sum. so it is hard to work out its limit , for solve this problem. this papers proposes is that a
3、limit theorem can help to solve this limit problem of sum formula and that some limit of product formula can also be solved by logarithm function. theorem1 let (a) f be differentiable at x=0 and f (0) =0,(b) g be integrable for xa, b.we haveproof by the (a), for every thereis a 0 such that implies .
4、then by the (b), there exists a real number m0 such that | g(x)| m for xa,b and there is a 0 such thattimplieslet ,so whent0 and let f (x) =x then theorem 1 has becomethis is definition of definite integral , and by logarithm function we getcorollary2 if f be differentiable at x=0 and f (0) =1 and g
5、 be integrable for x into a,b then we havein practical is usually divide 0,1 into n parts, and choose (k=1,2, , n).corollary3let f be differentiable at x=0 and g be integrable for x into 0,1 , then we have(a) if f (0) =0, we have(b)(c) if f(0) =1, we haveproof by that theorem1 and logarithm function
6、, we getexample1evaluate each of the following:solution(a) rewrite the sum in the equivalent formso that by theorem1, (b)rewrite the sum in the equivalent formso that by theorem1,so that by theorem1,(d)let f(x) =sinax and g(x) =x. thenso that by theorem 1,so that by theorem 1,example2evaluate the fo
7、llowing limits:solution(a) we can change the product intoan equivalent from by writinglet f(x) = 1+x and g(x) =x. thenso that by corollary 2,(b) rewrite the product in the equivalent fromso that by corollary 2,example3evaluateof thefollowinglimitso1 王寿生等.微积分解题方法与技巧m.西安:西北工业大学出版社,1990.2 林源渠等.数学分析习题集m
8、.北京:北京大学出版社,1993.3 美波利亚等.数学分析中的问题与定理m.张奠宙等译.上海:上海科技出版社,1985.4 loren c larson. problem-solving through problems m. printed and bound by r. r. donnelley &sons, harrisonburg, virginia. 175 fifth avenue, newyork, newyork10010, u. s. a. springer verlag newyork inc. , 1983.极限的一个定理及其应用摘要:这篇文章给出了一个能较好地解决一类特
9、殊“和式”的极限问题的极限定理。同时,利用对数函数的特性,又能够用来解决一些“积式”的极限。关键词:极限,和式,积式在微积分中,我们经常使用一些特殊的极限来解决和式问题:但是这个式子是不能直接相加的,也不能转换成函数的积分和的形式。所以很难求出它的极限,为了解决这个问题。这篇文章给出了一个极限定理,能较好地解决这一类特殊“和式”的极限问题。同时,利用对数函数又能够用来解决一些“积式”的极限。定理1. 令()在时可微且,()在区间内可积,则其中 :, , 证明:由条件()可知,对任意的存在,当时有由条件()可知,这里有存在一个实数,且在时,存在, 当时有令 ,当时有(因为)另外还有我们注意到到,
10、先前的变量是以为条件的,在的情况中,有我们可以得到:当时当时令,则定理1可以变为这是一个定积分的定义,然后通过对数函数我们可以得到推论2.如果在时可微且,在区间上可积,则有:在实际情况下,我们经常将n等分,取推论3 令在处可微,在上对可积,我们有(a) 如果,我们有(b) 如果,我们有证明:由定理1和对数函数,我们可得例1:求下列各式的值解:(a)以等价形式进行和的重置:令 且 则且根据定理1得: (b)以等价形式进行和的重置:令 且 则则根据定理1得(c)令=且则 且 则根据定理1得(d)令且则且则根据定理1得(e)令且则且根据定理1得例2:求下列各式的极限解:(a)我们可以以等价形式写出积的变换:令且得 且 则根据推论2得 (b)以等价形式写出积的重置令且,则则根据推论2得例3求下式极限解:令,将平均分成份,选择点则所以, 参考文献:1王寿生等. 微积分解题方法与技巧m . 西安:西北工业大学出版社,1990.2林源渠等. 数学分析习题集m . 北京:北京大学出版社,1993.3美波利亚等. 数学分析中的问题与定理m . 张奠宙等译. 上海:上海科技出版社,1985.4loren c larson. problem2solving through problems m . printed and bound by r. r.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中英文版《死亡诗社》完整剧本
- 职业教育发展路径与创新实践
- 跨学科实践:为家庭电路做设计
- 脑卒中营养管理
- 网络直播带货合作协议
- 采购订单合同模板
- 2026河北沧州师范学院选聘高层次人才15人笔试考试参考试题及答案解析
- 商品重发服务条款
- 保密合同主体变更办法
- 2025年高性能制造智能制造实践题
- 企业税务规划合规审查手册
- 2026年山西工程职业学院单招职业技能考试题库及答案解析(名师系列)
- 附件扭转诊治中国专家共识(2024年版)解读
- 社区工作者社工面试题及答案解析
- 2024年福建省特殊技能人才录用公安特警队员笔试真题
- 全员品质意识培训
- 货物代理报关合同范本
- 2025甘肃酒泉市公安局招聘留置看护岗位警务辅助人员30人(第三批)考试笔试备考题库及答案解析
- 2025高中历史时间轴与大事年表
- 《企业纳税实训》课件 第12章 企业所得税
- 2025年大学《新闻学-新闻法规与伦理》考试参考题库及答案解析
评论
0/150
提交评论