版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1); 解 =2(-4)3+0(-1)(-1)+118 -013-2(-1)8-1(-4)(-1) =-24+8+16-4=-4. (2); 解 =acb+bac+cba-bbb-aaa-ccc =3abc-a3-b3-c3. (3); 解 =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a). (4). 解 =x(x+y)y+yx(x+y)+(x+y)yx-y3-(x+y)3-x3 =3xy(x+y)-y3-3x2 y-x3-y3-x3 =-2(x3+y3). 2. 按自然数从小到大为标准次序, 求下列
2、各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 (2n-1) 2 4 (2n); 解 逆序数为: 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) (2n-1)2, (2n-1)4, (2n-1)6, , (2n-1)(2n-2) (n-1个) (6)1 3 (2n-1) (2n) (2n-2) 2. 解
3、逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) (2n-1)2, (2n-1)4, (2n-1)6, , (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个) (2n)2, (2n)4, (2n)6, , (2n)(2n-2) (n-1个) 3. 写出四阶行列式中含有因子a11a23的项. 解 含因子a11a23的项的一般形式为(-1)ta11a23a3ra4s,其中rs是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a11a23的项分别是 (-1)ta11a23a32a44=(-1)1a11a23a32a44=-a11a2
4、3a32a44, (-1)ta11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42. 4. 计算下列各行列式: (1); 解 . (2); 解 . (3); 解 . (4). 解 =abcd+ab+cd+ad+1. 5. 证明: (1)=(a-b)3; 证明 =(a-b)3 . (2); 证明 . (3); 证明 (c4-c3, c3-c2, c2-c1得) (c4-c3, c3-c2得) . (4) =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+c+d); 证明 =(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)(a+b+
5、c+d). (5)=xn+a1xn-1+ +an-1x+an . 证明 用数学归纳法证明. 当n=2时, , 命题成立. 假设对于(n-1)阶行列式命题成立, 即 dn-1=xn-1+a1 xn-2+ +an-2x+an-1, 则dn按第一列展开, 有 =xd n-1+an=xn+a1xn-1+ +an-1x+an . 因此, 对于n阶行列式命题成立. 6. 设n阶行列式d=det(aij), 把d上下翻转、或逆时针旋转90、或依副对角线翻转, 依次得 , , , 证明, d3=d . 证明因为d=det(aij), 所以 . 同理可证 . . 7. 计算下列各行列式(dk为k阶行列式): (
6、1), 其中对角线上元素都是a, 未写出的元素都是0; 解 (按第n行展开) =an-an-2=an-2(a2-1). (2); 解 将第一行乘(-1)分别加到其余各行, 得 , 再将各列都加到第一列上, 得 =x+(n-1)a(x-a)n-1. (3); 解 根据第6题结果, 有 此行列式为范德蒙德行列式. . (4); 解 (按第1行展开) . 再按最后一行展开得递推公式 d2n=andnd2n-2-bncnd2n-2, 即d2n=(andn-bncn)d2n-2. 于是 . 而 , 所以 . (5) d=det(aij), 其中aij=|i-j|; 解 aij=|i-j|, =(-1)n
7、-1(n-1)2n-2. (6), 其中a1a2 an0. 解 . 8. 用克莱姆法则解下列方程组: (1); 解 因为 , , , , ,所以 , , , . (2). 解 因为 , , , , , , 所以, , , , . 9. 问l, m取何值时, 齐次线性方程组有非零解? 解 系数行列式为 . 令d=0, 得 m=0或l=1. 于是, 当m=0或l=1时该齐次线性方程组有非零解. 10. 问l取何值时, 齐次线性方程组有非零解? 解 系数行列式为 =(1-l)3+(l-3)-4(1-l)-2(1-l)(-3-l) =(1-l)3+2(1-l)2+l-3. 令d=0, 得 l=0, l
8、=2或l=3. 于是, 当l=0, l=2或l=3时, 该齐次线性方程组有非零解. 第二章矩阵及其运算 1. 已知线性变换: , 求从变量x1, x2, x3到变量y1, y2, y3的线性变换. 解 由已知: , 故 , . 2. 已知两个线性变换 , , 求从z1, z2, z3到x1, x2, x3的线性变换. 解 由已知 , 所以有. 3. 设, , 求3ab-2a及atb. 解 , . 4. 计算下列乘积: (1); 解 . (2); 解 =(13+22+31)=(10). (3); 解 . (4) ; 解 . (5); 解 =(a11x1+a12x2+a13x3 a12x1+a22
9、x2+a23x3 a13x1+a23x2+a33x3) . 5. 设, , 问: (1)ab=ba吗? 解 abba. 因为, , 所以abba. (2)(a+b)2=a2+2ab+b2吗? 解 (a+b)2a2+2ab+b2. 因为, , 但 , 所以(a+b)2a2+2ab+b2. (3)(a+b)(a-b)=a2-b2吗? 解 (a+b)(a-b)a2-b2. 因为, , , 而 , 故(a+b)(a-b)a2-b2. 6. 举反列说明下列命题是错误的: (1)若a2=0, 则a=0; 解 取, 则a2=0, 但a0. (2)若a2=a, 则a=0或a=e; 解 取, 则a2=a, 但a
10、0且ae. (3)若ax=ay, 且a0, 则x=y . 解 取 , , , 则ax=ay, 且a0, 但xy . 7. 设, 求a2, a3, , ak. 解 , , , . 8. 设, 求ak . 解 首先观察 , , , , , . 用数学归纳法证明: 当k=2时, 显然成立. 假设k时成立,则k+1时, , 由数学归纳法原理知: . 9. 设a, b为n阶矩阵,且a为对称矩阵,证明btab也是对称矩阵. 证明 因为at=a, 所以 (btab)t=bt(bta)t=btatb=btab, 从而btab是对称矩阵. 10. 设a, b都是n阶对称矩阵,证明ab是对称矩阵的充分必要条件是a
11、b=ba. 证明 充分性: 因为at=a, bt=b, 且ab=ba, 所以 (ab)t=(ba)t=atbt=ab, 即ab是对称矩阵. 必要性: 因为at=a, bt=b, 且(ab)t=ab, 所以 ab=(ab)t=btat=ba. 11. 求下列矩阵的逆矩阵: (1); 解 . |a|=1, 故a-1存在. 因为 , 故 . (2); 解 . |a|=10, 故a-1存在. 因为 , 所以 . (3); 解 . |a|=20, 故a-1存在. 因为 , 所以 . (4)(a1a2 an 0) . 解 , 由对角矩阵的性质知 . 12. 解下列矩阵方程: (1); 解 . (2); 解
12、 . (3); 解 . (4). 解 . 13. 利用逆矩阵解下列线性方程组: (1); 解 方程组可表示为 , 故 , 从而有 . (2). 解 方程组可表示为 , 故 , 故有 . 14. 设ak=o (k为正整数), 证明(e-a)-1=e+a+a2+ +ak-1. 证明 因为ak=o , 所以e-ak=e. 又因为 e-ak=(e-a)(e+a+a2+ +ak-1), 所以 (e-a)(e+a+a2+ +ak-1)=e, 由定理2推论知(e-a)可逆, 且 (e-a)-1=e+a+a2+ +ak-1. 证明 一方面, 有e=(e-a)-1(e-a). 另一方面, 由ak=o, 有 e=
13、(e-a)+(a-a2)+a2- -ak-1+(ak-1-ak) =(e+a+a2+ +a k-1)(e-a), 故 (e-a)-1(e-a)=(e+a+a2+ +ak-1)(e-a),两端同时右乘(e-a)-1, 就有 (e-a)-1(e-a)=e+a+a2+ +ak-1. 15. 设方阵a满足a2-a-2e=o, 证明a及a+2e都可逆, 并求a-1及(a+2e)-1. 证明 由a2-a-2e=o得 a2-a=2e, 即a(a-e)=2e, 或 , 由定理2推论知a可逆, 且. 由a2-a-2e=o得 a2-a-6e=-4e, 即(a+2e)(a-3e)=-4e, 或 由定理2推论知(a+
14、2e)可逆, 且. 证明 由a2-a-2e=o得a2-a=2e, 两端同时取行列式得 |a2-a|=2, 即 |a|a-e|=2, 故 |a|0, 所以a可逆, 而a+2e=a2, |a+2e|=|a2|=|a|20, 故a+2e也可逆.由 a2-a-2e=o a(a-e)=2e a-1a(a-e)=2a-1e, 又由 a2-a-2e=o(a+2e)a-3(a+2e)=-4e (a+2e)(a-3e)=-4 e, 所以 (a+2e)-1(a+2e)(a-3e)=-4(a+2 e)-1, . 16. 设a为3阶矩阵, , 求|(2a)-1-5a*|. 解 因为, 所以 =|-2a-1|=(-2)
15、3|a-1|=-8|a|-1=-82=-16. 17. 设矩阵a可逆, 证明其伴随阵a*也可逆, 且(a*)-1=(a-1)*. 证明 由, 得a*=|a|a-1, 所以当a可逆时, 有 |a*|=|a|n|a-1|=|a|n-10, 从而a*也可逆. 因为a*=|a|a-1, 所以 (a*)-1=|a|-1a. 又, 所以 (a*)-1=|a|-1a=|a|-1|a|(a-1)*=(a-1)*. 18. 设n阶矩阵a的伴随矩阵为a*, 证明: (1)若|a|=0, 则|a*|=0; (2)|a*|=|a|n-1. 证明 (1)用反证法证明. 假设|a*|0, 则有a*(a*)-1=e, 由此
16、得 a=a a*(a*)-1=|a|e(a*)-1=o , 所以a*=o, 这与|a*|0矛盾,故当|a|=0时, 有|a*|=0. (2)由于, 则aa*=|a|e, 取行列式得到 |a|a*|=|a|n. 若|a|0, 则|a*|=|a|n-1; 若|a|=0, 由(1)知|a*|=0, 此时命题也成立. 因此|a*|=|a|n-1. 19. 设, ab=a+2b, 求b. 解 由ab=a+2e可得(a-2e)b=a, 故 . 20. 设, 且ab+e=a2+b, 求b. 解 由ab+e=a2+b得 (a-e)b=a2-e, 即 (a-e)b=(a-e)(a+e). 因为, 所以(a-e)
17、可逆, 从而 . 21. 设a=diag(1, -2, 1), a*ba=2ba-8e, 求b. 解 由a*ba=2ba-8e得 (a*-2e)ba=-8e, b=-8(a*-2e)-1a-1 =-8a(a*-2e)-1 =-8(aa*-2a)-1 =-8(|a|e-2a)-1 =-8(-2e-2a)-1 =4(e+a)-1 =4diag(2, -1, 2)-1 =2diag(1, -2, 1). 22. 已知矩阵a的伴随阵, 且aba-1=ba-1+3e, 求b. 解 由|a*|=|a|3=8, 得|a|=2. 由aba-1=ba-1+3e得 ab=b+3a, b=3(a-e)-1a=3a(
18、e-a-1)-1a . 23. 设p-1ap=l, 其中, , 求a11. 解 由p-1ap=l, 得a=plp-1, 所以a11= a=pl11p-1. |p|=3, , , 而 , 故 . 24. 设ap=pl, 其中, , 求j(a)=a8(5e-6a+a2). 解 j(l)=l8(5e-6l+l2) =diag(1,1,58)diag(5,5,5)-diag(-6,6,30)+diag(1,1,25) =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). j(a)=pj(l)p-1 . 25. 设矩阵a、b及a+b都可逆, 证明a-1+b-1也可逆, 并求其
19、逆阵. 证明 因为 a-1(a+b)b-1=b-1+a-1=a-1+b-1, 而a-1(a+b)b-1是三个可逆矩阵的乘积, 所以a-1(a+b)b-1可逆, 即a-1+b-1可逆. (a-1+b-1)-1=a-1(a+b)b-1-1=b(a+b)-1a. 26. 计算. 解 设, , , , 则 , 而 , , 所以 , 即 . 27. 取, 验证. 解 , 而 , 故 . 28. 设, 求|a8|及a4. 解令, , 则 , 故 , . . 29. 设n阶矩阵a及s阶矩阵b都可逆, 求 (1); 解 设, 则 . 由此得 , 所以 . (2). 解 设, 则 . 由此得 , 所以 . 30
20、. 求下列矩阵的逆阵: (1); 解 设, , 则 , . 于是 . (2). 解 设, , , 则 . 第三章矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵: (1); 解 (下一步: r2+(-2)r1, r3+(-3)r1. ) (下一步: r2(-1), r3(-2). ) (下一步: r3-r2. ) (下一步: r33. ) (下一步: r2+3r3. ) (下一步: r1+(-2)r2, r1+r3. ) . (2); 解 (下一步: r22+(-3)r1, r3+(-2)r1. ) (下一步: r3+r2, r1+3r2. ) (下一步: r12. ) . (3)
21、; 解 (下一步: r2-3r1, r3-2r1, r4-3r1. ) (下一步: r2(-4), r3(-3) , r4(-5). ) (下一步: r1-3r2, r3-r2, r4-r2. ) . (4). 解 (下一步: r1-2r2, r3-3r2, r4-2r2. ) (下一步: r2+2r1, r3-8r1, r4-7r1. ) (下一步: r1r2, r2(-1), r4-r3. ) (下一步: r2+r3. ) . 2. 设, 求a. 解 是初等矩阵e(1, 2), 其逆矩阵就是其本身. 是初等矩阵e(1, 2(1), 其逆矩阵是 e(1, 2(-1) . . 3. 试利用矩阵
22、的初等变换, 求下列方阵的逆矩阵: (1); 解 故逆矩阵为. (2). 解 故逆矩阵为. 4. (1)设, , 求x使ax=b; 解 因为 , 所以 . (2)设, , 求x使xa=b. 解 考虑atxt=bt. 因为 , 所以 , 从而 . 5. 设, ax =2x+a, 求x. 解 原方程化为(a-2e)x =a. 因为 , 所以 . 6. 在秩是r 的矩阵中,有没有等于0的r-1阶子式? 有没有等于0的r阶子式? 解 在秩是r的矩阵中, 可能存在等于0的r-1阶子式, 也可能存在等于0的r阶子式. 例如, , r(a)=3. 是等于0的2阶子式, 是等于0的3阶子式. 7. 从矩阵a中
23、划去一行得到矩阵b, 问a, b的秩的关系怎样? 解 r(a)r(b). 这是因为b的非零子式必是a的非零子式, 故a的秩不会小于b的秩. 8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0). 解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵: ,此矩阵的秩为4, 其第2行和第3行是已知向量. 9. 求下列矩阵的秩, 并求一个最高阶非零子式: (1); 解 (下一步: r1r2. ) (下一步: r2-3r1, r3-r1. ) (下一步: r3-r2. ) , 矩阵的, 是一个最高阶非零子式. (2); 解 (下一步: r1
24、-r2, r2-2r1, r3-7r1. ) (下一步: r3-3r2. ) , 矩阵的秩是2, 是一个最高阶非零子式. (3). 解 (下一步: r1-2r4, r2-2r4, r3-3r4. ) (下一步: r2+3r1, r3+2r1. ) (下一步: r216r4, r3-16r2. ) , 矩阵的秩为3, 是一个最高阶非零子式. 10. 设a、b都是mn矩阵, 证明ab的充分必要条件是r(a)=r(b). 证明 根据定理3, 必要性是成立的. 充分性. 设r(a)=r(b), 则a与b的标准形是相同的. 设a与b的标准形为d, 则有ad, db.由等价关系的传递性, 有ab. 11.
25、 设, 问k为何值, 可使 (1)r(a)=1; (2)r(a)=2; (3)r(a)=3. 解 . (1)当k=1时, r(a)=1; (2)当k=-2且k1时, r(a)=2; (3)当k1且k-2时, r(a)=3. 12. 求解下列齐次线性方程组: (1); 解对系数矩阵a进行初等行变换, 有 a=, 于是 , 故方程组的解为 (k为任意常数). (2); 解 对系数矩阵a进行初等行变换, 有 a=, 于是 , 故方程组的解为 (k1, k2为任意常数). (3); 解 对系数矩阵a进行初等行变换, 有 a=, 于是 , 故方程组的解为 . (4). 解 对系数矩阵a进行初等行变换,
26、有 a=, 于是 , 故方程组的解为 (k1, k2为任意常数). 13. 求解下列非齐次线性方程组: (1); 解 对增广矩阵b进行初等行变换, 有 b=, 于是r(a)=2, 而r(b)=3, 故方程组无解. (2); 解 对增广矩阵b进行初等行变换, 有 b=, 于是 , 即 (k为任意常数). (3); 解 对增广矩阵b进行初等行变换, 有 b=, 于是 , 即 (k1, k2为任意常数). (4). 解 对增广矩阵b进行初等行变换, 有 b=, 于是 , 即 (k1, k2为任意常数). 14. 写出一个以为通解的齐次线性方程组. 解 根据已知, 可得 , 与此等价地可以写成 , 或
27、 , 或 , 这就是一个满足题目要求的齐次线性方程组. 15. l取何值时, 非齐次线性方程组. (1)有唯一解; (2)无解; (3)有无穷多个解? 解 . (1)要使方程组有唯一解, 必须r(a)=3. 因此当l1且l-2时方程组有唯一解. (2)要使方程组无解, 必须r(a)r(b), 故 (1-l)(2+l)=0, (1-l)(l+1)20. 因此l=-2时, 方程组无解. (3)要使方程组有有无穷多个解, 必须r(a)=r(b)3, 故 (1-l)(2+l)=0, (1-l)(l+1)2=0. 因此当l=1时, 方程组有无穷多个解. 16. 非齐次线性方程组当l取何值时有解?并求出它的解. 解. 要使方程组有解, 必须(1-l)(l+2)=0, 即l=1, l=-2. 当l=1时, , 方程组解为 或, 即 (k为任意常数). 当l=-2时, , 方程组解为 或, 即 (k为任意常数). 17. 设. 问l为何值时, 此方程组有唯一解、无解或有无穷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权与社会经济关系浅析
- 数字化转型背景下中小银行成本管理研究
- 《第二节 人口的空间变化》(同步训练)高中地理必修2-人教版-2024-2025学年
- 《第2课 古代手工业的进步》(同步训练)高中历史必修2-人教版-2024-2025学年
- 2024年度混凝土供求合同
- 2024农业机械设备维修与配件供应合同
- 2024年建筑材料保险协议
- 人教版英语八年级上册Unit 6 单元卷
- Unit 6 提优卷 人教版八年级英语上册
- 2024年个人租赁协议
- 2022公路工程施工技术方案手册
- 亮化工程可行性研究报告
- 安全生产费用提取使用明细
- (完整版)病例演讲比赛PPT模板
- 直播合作协议
- 社科类课题申报工作辅导报告课件
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
评论
0/150
提交评论