解答题规范专练(五) 平面解析几何_第1页
解答题规范专练(五) 平面解析几何_第2页
解答题规范专练(五) 平面解析几何_第3页
解答题规范专练(五) 平面解析几何_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、解答题规范专练(五)平面解析几何1已知椭圆C1:y21,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,2,求直线AB的方程2(2014合肥模拟)已知椭圆:1(ab0)的长轴长为4,且过点.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点若,点N为线段AB的中点,C,D,求证:|NC|ND|2.3已知椭圆C:1(ab0)的长轴长为4,离心率e.(1)求椭圆的方程;(2)设椭圆C的左顶点为A,右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x3分别交于M,N两点,求线段MN的长度的最小值答

2、案1解:(1)由已知可设椭圆C2的方程为1(a2),其离心率为,故,解得a4.故椭圆C2的方程为1.(2)A,B两点的坐标分别记为(xA,yA),(xB,yB),由2及(1)知,O,A,B三点共线且点A,B不在y轴上,因此可设直线AB的方程为ykx.将ykx代入y21中,得(14k2)x24,所以x.将ykx代入1中,得(4k2)x216,所以x.又由2,得x4x,即,解得k1.故直线AB的方程为yx或yx.2解:(1)由已知可得故所以椭圆的方程为y21.(2)证明:设A(x1,y1),B(x2,y2),则y1,y1.由,得M.因为M是椭圆C上一点,所以21,即2221,得2221,故y1y20.又线段AB的中点N的坐标为,所以22y1y21,从而线段AB的中点N在椭圆2y21上又椭圆2y21的两焦点恰为C,D,所以|NC|ND|2.3解:(1)由题意得2a4,故a2,e,c,b222()22,所求的椭圆方程为1.(2)依题意,直线AS的斜率k存在,且k0,故可设直线AS的方程为yk(x2),从而M(3,5k),由得(12k2)x28k2x8k240.设S(x1,y1),则(2)x1,得x1,从而y1,即S,又由B(2,0)可得直线SB的方程为,化简得y(x2),由得,N,故|MN|5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论