正弦定理的几种证明方法_第1页
正弦定理的几种证明方法_第2页
正弦定理的几种证明方法_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、正弦定理的几种证明方法1 .利用三角形的高证明正弦定理(1)当AABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定 义,有 CD = asinB ,CD =b sin A 由此,得 亠=亠 同理可得 亠=厶sinA sinn ,sine sinnsinJ sink sinQ 从而这个结论在锐角三角形中成立.a _ b sinJ sinZASC ,同理可得益*(2)当AABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D, 根据锐角三角函数的定义,有CD = asinZCBD = asinZABC 9 CD =b sinA。山此,故有亠=巳二厶 sinJ sinZABC

2、 sinC.由可知,在AABC中,=- 成立.sinA sinn sine从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即&_ b _ csin月 sin方 sinC .”用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题:已知点A,点B之间的距丨AB|,可测量角A与角B, 需要定位点C,即:在如图AABC中,已知角A,角B, I AB丨=c,求边AC的长b解:过C作CD?AB交AB于D,则DC BP csinA csinAcosCtanC sinC sinCAD = c cos AcosC-AC = AD + DC = ccosA + in 仏。sC/sinCcosA +

3、 sZcZ sinCsinCsinC推论:sinB sinC同理可证:=sin A sinB sinC2利用三角形面积证明正弦定理已知 ABC,设 BC = a, CA = b,AB = c,作 AD 丄 BC,垂足为 D 则 Rt AADB中,sinB = ,/ AD=AB-sinB=csinBABS. .abc=6/ AD = acsin B 同理/可证 Sr abc二一dbsin C = bcsm A.2 2 2 2/. Saabc= tvZ?sinC = bcsin A =acsin B absinc=bcsinA二acsinB2 2 2在等式两端同除以ABC,可得哑=沁=泌 = =

4、cabsin A sin 3 sinC3 向量法证明正弦定理(l)ABC为锐角三角形,过点A作单位向量j垂直于疋,则j与AB的夹角为由分配律可得AC+jCB = jAB.|AB|cos(90S).90,j与CB的夹角为9CT-C.由向量的加法原则可得 AC + CB = AB, 为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量 j的数量积运算,得到j(ACCB) = jAB|j|Cos90+|j| |cs|cos(90-C)=|j|: asin C=csi nA. =sin A sinC另外,过点c作与CB垂直的单位向量j,则j与AC的夹角为90。+6与AB的夹角 为 9

5、0+B,可得二一=.sinC sinB(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与AC的夹角为与的夹角为沁)佥r丽厂鴉(2)A4BC为钝角三角形,不妨设人90。,过点A作与AC垂直的单位向量j,则j与AB的夹角为A-90,j与CB的夹角为90-C.由 AC + CB = AB /得 j AC +j-CB=j-AB,A a c即 a-Cos(90-C)=c-Cos(A-90),/. asinC=csinA. /.=sin A sinCa _ b _ csimA sin B sin C53外,过点c作与CB垂直的单位向量j,则j与AC的夹角为90+cj与AB夹角为 90+B.同理,可得=sin 3 sinC 4外接圆证明正弦定理/ABC中启知BC=azAC=bzAB=C/作ABC的外接圆Q为圆心,连结BO并延长交圆于/设BBJ2R.则根据直径所对的圆周角是直角以及同弧所对 的圆周角相等可以得到ZBABO ZC = ZB sinC二sinB=sinC = sinF =丄:- = 2R 2R siiiC同理,可得一-=27?, - = 2R ./.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论