专题一三角与向量的交汇题型分析及解题策略规划_第1页
专题一三角与向量的交汇题型分析及解题策略规划_第2页
专题一三角与向量的交汇题型分析及解题策略规划_第3页
专题一三角与向量的交汇题型分析及解题策略规划_第4页
专题一三角与向量的交汇题型分析及解题策略规划_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题一:三角与向量的交汇题型分析及解题策略【命题趋向】三角函数与平面的向量的综合主要体现为交汇型,在高考中,主要出现在解答题的第一个试题位置上,其难度中等偏下,分值一般为12分,交汇性主要体现在:三角函数恒等变换公式、性质与图象与 平面的向量的数量积及平面向量的平行、垂直、夹角及模之间都有着不同程度的交汇,在高考中是一个热点如08年安徽理科第5题(5分),考查三角函数的对称性与向量平移、08年山东文第8题理第15题(5分)考查两角和与差与向量垂直、08福建文理第17题(12分)考查三角函数的求值与向量积、07的天津文理第15题(4分)考查正余弦定理与向量数量积等根据2009年考纲预计在09年高

2、考中解答题 仍会涉及三角函数的基本恒等变换公式、诱导公式的运用、三角函数的图像和性质、向量的数量积、共线(平行)与垂直的充要条件条件.主 要考查题型:(1)考查纯三角函数函数知识,即一般先通过三角恒等 变换公式化简三角函数式,再求三角函数的值或研究三角函数的图象 及性质;(2)考查三角函数与向量的交汇,一般是先利用向量知识建 立三角函数关系式,再利用三角函数知识求解;(3)考查三角函数知识与解三角形的交汇,也就是将三角变换公式与正余弦定理交织在一【考试要求】1理解任意角的正弦、余弦、正切的定义.了解余切、正割、余 割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导 公式了解周期函数与

3、最小正周期的意义.2. 掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的 正弦、余弦、正切公式.3. 能正确运用三角公式进行简单三角函数式的化简、求值和恒等 式证明.4. 理解正弦函数、余弦函数、正切函数的图像和性质,会用“五 点法”画正弦函数、余弦函数和函数y=Asin( oo x+ )的简图,理解A, co , 的物理意义.5. 掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6. 掌握向量的加法和减法.掌握实数与向量的积,理解两个向量 共线的充要条件.7. 了解平面向量的基本定理.理解平面向量的坐标的概念,掌握 平面向量的坐标运算.8掌握平面向量的数量积及其几何意义,了解用平面

4、向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.9.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公 式,并且能熟练运用.掌握平移公式.【考点透视】向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换而三角函数是以“角”为自变量的函数,函 数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切 的联系同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性主要考点如下:1. 考查三角式化简、求值、证明及求角问题.2. 考查三角函数的性质与图像,特别是y二

5、Asin( :x+:)的性质和 图像及其图像变换3. 考查平面向量的基本概念, 向量的加减运算及几何意义, 此类 题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4. 考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5. 考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题6. 考查利用正弦定理、余弦定理解三角形问题 .【典例分析】题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中解答平移问题主要注意两个方面的

6、确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移 过程中对应的向量坐标.【例1】 把函数y = sin2x的图象按向量a =(召,一 3)平移后,得到函数y= Asin( w x + :)(A 0,w 0, |= 2)的图象,贝卩-和B的值依次为()9999a. 12, 3b. 3, 3 C 3, 3 d. 12,39v X U + -【分析】根据向量的坐标确定平行公式为 6,再代入ky = y? + 3已知解析式可得还可以由向量的坐标得图象的两个平移过程,由此 确定平移后的函数解析式,经对照即可作出选择9严x 口 = x严【解析1】 由平移向量知向 量平移 公式*6,即V

7、?=y 39x x + -6,代入 y sin2x 得 y?+ 3 sin2(x ?+ 舌),即到 y sin(2x y y3+ y) 3,由此知3,B= 3,故选 C.【解析2】由向量言=(6, 3),知图象平移的两个过程,即将原函数的图象整体向左平移 6个单位,再向下平移 3个单位,由9冗此可得函数的图象为 y= sin2(x + g 3,即y = sin(2x +) 3,由9此知:=3, B= 3,故选C.3【点评】此类题型将三角函数平移与向量平移有机地结合在一 起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的 思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移 的

8、方向及平移的大小题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转 化为三角问题,然后再利用三角函数的相关知识再对三角式进行化 简,或结合三角函数的图象与民性质进行求解此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查【例2】 已知A B、C为三个锐角,且 A+ B+ C=n .若向量书 =(2 2sinA, cosA+ sinA)与向量q = (cosA sinA, 1 + sinA)是共(I)求角A;2 C 3B(U)求函数 y = 2sin B+ cos q 的最大值.【分析】 首先利用向量共线的充要条件建立三角

9、函数等式,由于可求得A角的正弦值,再根据角的范围即可解决第(I )小题;而第 (U )小题根据第(I )小题的结果及A B、C三个角的关系,结合三角 民恒等变换公式将函数转化为关于角B的表达式,再根据B的范围求最值.【解】 (I)v p、q 共线,. (2 2sinA)(1 + sinA) = (cosA23+ sinA)(cosA sinA),贝U sin A= 4,又A为锐角,所以sinA二石2 3 * 5,则9A= 3.9n 3 B) 3B22:13=2sin 2B+ cos变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量 共线的充要条件将向量问题转化为三角函数问题;(2)

10、根据条件确定B角的范围.一般地,由于在三角函数中角是自变量,因此解决三角 函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题, 再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与 方程的思想、转化的思想等.【例 3】已知向量a = (3sin a ,cos a ),卡=(2sin a,5sin a3 ?4cos a ), a E(2,2n ),且首丄-b .(I)求tan a的值;a ?(n) 求 cos( +3)的值.【分析】 第(I )小题从向量

11、垂直条件入手,建立关于 a的三 角方程,再利用同角三角函数的基本关系可求得 tan a的值;第(n) 小题根据所求得的tan a的结果,利用二倍角公式求得 tan专的值, 再利用两角和与差的三角公式求得最后的结果.【解】(=(2sin a , 5sin 故百=6sin 2 a 由于 cos a 0, 6tan 3,或 tan a= 2.3?e( , 2 n), tan(I) / a 丄 Tb,a 百=0.而eT = ( 3sin a , cos a ),a 4COS a ), 2+ 5si n a COS a 4cos a = 0 .2a + 5tan a 4 = 0 .解之,得 tan a

12、=a 0,故tan a1=2 (舍去).tan a(n)v由 tan a55,acosy =3 :( ,2 冗),4-4,求得tan2 ;55 ,e212a2, tan q = 2 (舍去).飞巾 2a ?a cos( 2 + 3)= cos2 5+151092 cos sina :2sin3 二辔14【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定, 再一次说明了在解答三角函数问题 中确定角的范围的重要性同时还可以看到第(I)小题的解答中用 到“弦化切”的思想方法,这是解决在一道试题中同时出现“切

13、函数 与弦函数”关系问题常用方法题型四三角函数与平面向量的模的综合此类题型主要是利用向量模的性质 | 2=a2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的 坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的 坐标运算进行求解【例 3】已知向量a = (cos a ,sin a ),百=(cos p ,sin p ), 百 = 5 . 5.( I )求 cos( a p )的值;(n )若一p v Ov a V2,且 sin p寻,求sina的值.【分析】利用向量的模的计算与数量积的坐标运算可解决第(I )小题;而第(n )小题则可变角a = ( a

14、 p ) +p,然后就须求sin( ap )与 cos p 即可.【解】(i)/ 百= 5 ?,二孑22 百+节2=4将向量 a = (cos a ,sin a ), b = (cos p ,sin p )代入上式得22 431 2(cos a cos p + sin a sin p ) + 1 =-,/. cos( a p );. 5599(n ) p V Ov a V2,二 Ov a p V n,由 cos(得 sin(4a p ) = 5,51213,.cos 3 = 13, sin a= sin ( a p ) +3 = sin( a p )cos 3 + cos( a 333 )si

15、n 3= 65.点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|言一b 为向量运算I首一节|2=(首一百)2;(2)注意解a 3的范围整个解 答过程体现方程的思想及转化的思想 题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合 解答时也主要是利用向量首先进行转化,再利用三角函数知识求解【例5】设函数f(x) =_a 节 .其中向量卞=(m, cosx),百=9(1 + sinx , 1) , x R,且 f(2)= 2. (

16、I)求实数 m 的值;(U)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关9系式,第(I)小题直接利用条件 f( 2 = 2可以求得,而第(n)小题利用三角函数函数的有界性就可以求解解:(I) f(x) = a 百=m(1 + sinx) + cosx ,999由 f( 2)= 2, 得 m(1+ sin 2) + cosq = 2,解得 1.(n)由(I)得 f(x) = sinx + cosx + 1 = 2sin(x + 玄)+ 1,当sin(x + 4) = 1时,f(x)的最小值为12.点

17、评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹 角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识 将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A、B、CABC的三个内角,其对边分别为a、b、ACOS2,sinA)A A=(cos 2,si

18、n 2),a= 2 3,且(1)若厶ABC的面积S= .3,求b+ c的值.(U)求b+ c的取值范围.【分析】 第(I )小题利用数量积公式建立关于角A的三角函数方程,再利用二倍角公式求得 A角,然后通过三角形的面积公式及余弦定理建立关于b、c的方程组求取b+ c的值;第(n )小题正弦定理及三角形内角和定理建立关于 B的三角函数式,进而求得 b+c的范【解】A A(I): m = ( cos?, sin ?),An (cos 2,sin ),且1m n 2,2A2A 1口1 cos + sin 2 2,即cosA 厂2?又 A (0 , n ),二 A亍1又由 Saabc qbcsinA

19、3,所以 bc 4,2 9QQQ.由余弦定理得:a b + c 2bc cosy + c)2,故 b + c 4.2 2b + c + bc ,A 16 (b(n)由正弦定理得:b c a 2 ,3 f 而忌s 2 : 4,又 B+ C二 b+ c = 4sinB + 4sinC = 4sinB + 4sin( 3 B) = 4sin(B + 3),2 3” Ov Bv3,则3 B+ 3亍,则于v sin(B + 3) 1,即卩 b + c 的取值范围是2 3, 4:.点评本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有

20、两处要注意:第(I )小题中求b+c没有利用分别求 出b、c的值为解,而是利用整体的思想,使问题得到简捷的解答; 第(n)小题的求解中特别要注意确定角B的范围.【专题训练】一、选择题1.已知a = (cos40 :, sin4O ),百=(cos20:, sin20J,则书=( )C.D.A. 12. 将函数y = 2sin2x 专的图象按向量(专,亍)平移后得到图象对 应的解析式是()A. 2cos2xB. 2cos2xC. 2sin2xD. 2sin2x3. 已知 ABC 中,Afe= ,,若 0)平移所得的图象关于y轴对称,则m的最小值为A. 62:C 2D.5J68.设 0 0 2 n

21、时,已知两个向量 OP= (cos 0 ,sin 0),OP= (2+ sin 0 , 2-cos 0),则向量P孩长度的最大值是A.2B.3C. 3 2D. 2 39. 若向量苗=(cos:,sin :),百=(cos :,sin:),则旨与百一定满足( )A. 了与百的夹角等于: B.首丄百C. a /百D.(苗+卞)丄(苗一卞)10. 已知向量 孑=(cos25 :,sin25 :),百=(sin20 :,cos20 :),若 t 是实数,且U =苗+1百,则| 1j |的最小值为( )A.2B. 1C. #D. 111. O是平面上一定点,A B、C是该平面上不共线的3个点,一动点P满

22、足: 范oA :(Afe+ AC),疋(0,),则直线 AP一定通过 ABC的()A.外心B.内心C.重心D.垂心12 .对于非零向量首我们可以用它与直角坐标轴的夹角:(0 W :,0 BA- BC=k(k R).(I)判断 ABC勺形状;(U)若c = 2,求k的值.18. 已知向量=(sinA,cosA) , = (Q3, 1) , h - = 1,且 A为 锐角.(I)求角 A的大小;(U)求函数f(x) = cos2x + 4cosAsinx(x R)的值域.19. 在 ABC中, A、B、C所对边的长分别为 a、b、c,已知向量(1 , 2sinA) , = (sinA , 1 +

23、cosA),满足h / , b+ c=3a.( I)求A的大小;(II)求sin(B + 6)的值.20. 已知 A B、C的坐标分别为 A (4, 0), B (0, 4), C (3cos a ,3sin a ).(I)若 a ( - n , 0),且|BC|,求角 a 的大小;.宀 2sin a + sin2 a(I)若AC丄BC,求一7-7-的值.1 十 tan a21. AABC的角 A B、C 的对边分别为 a、b、c, lm = (2b c, a),下 =(cosA , cosC),且 Th 丄卞.(I )求角A的大小;29(I)当y= 2sin2B+ sin(2B十占)取最大值

24、时,求角 B的大小.22 .已知 T = (cosx 十 sinx , sinx) , Tb = (cosx sinx , 2cosx),(I)求证:向量T与向量卡不可能平行;99(I)若f(x)百,且x 4,4时,求函数f(x)的最大值及最小值.【专题训练】参考答案、选择题1 . B 解析:由数量积的坐标表示知T = cos40 -si n20 :十 sin40 :cos20 = sin60 =于n? n n2. D【解析】y = 2sin2x ty = 2sin2 (x+ 片-乙 十了,即 y =2sin2x.,Afe* aC - 3. A【解析】因为cosZ皿阳皿_ | 显BAC为钝角.

25、4. B31【解析】由平行的充要条件得tX 3 sin :cos :_ 0,sin2 :_ 1,232 := 90 :,= 45:.5. B3?【解析】 _sin 0+ |sinq,t 0 (冗,y),A |sinq_ sin 0,扁b = 0,苗丄百6. A 冗【解析】 _ +: _ (6 , 4 + 2:),代入 y_sin得,94+ 2 = sin 2 = 1,解得:_ 5=2.5?7. B【解析】考虑把函数y_sin(x十石)的图象变换为y_cosx的5 ?99图象,而 y_ sin(x +石)_ cos(x + 3),即把 y _ cos(x + 3)的图象99变换为y _ cosx

26、的图象,只须向右平行3个单位,所以3,故选B.8 C 【解析】|PtR| _ (2 + sin 0 cos 0 )2+ (2 cos 0 sin 0 )210 8cos 0 2AD,又由OP= g:(AB+ AC), AP= 2:AD,所以AP与At共线,即有直线AP与直线AD重合,即直线 AP一定通过厶ABC的重心.A【解析】设首=(x,y) , x轴、y轴、z轴方向的单位向量分A a别为A (1,0),了 (0,1),由向量知识得cos :cos 丄丄| 了|丨|y2222,贝y cos ?+ cos : 1.x + y二、填空题13.愛49【解析】由A / A ,得 sin : 2 3c

27、os :,tan :2sin :cos :4 3, sin2 sin 2:+ cos2: tan2:+ 1 石,14 . J3【解析】OA- CJB= 5 :10cos :co :s + 10sin :sin :=1yJ35 :10cos( : :) 5 :cos( : :) 2,二sin / AO电,又| 缺| = 2, | OB| = 5 ,as aaob= X 2 X 5 X寸.915. (6, -1)【解析】要经过平移得到奇函数 g(x),应将函数f(x)9k冗=tan(2x + -) + 1的图象向下平移1个单位,再向右平移一 +329、k n6(k Z)个单位.即应按照向量 A (

28、伍+ 6, 1) (k Z)进行平移.要使|a|最小,=1,有3冗 |m| |-n |cos4, fx=01 A y= 11,则x2 + y2= 1,由解得x= 1十 y=0或16. (- 1,0)或(0,- 1)【解析】设彳=(x, y),由H卞 x + y= 1 ,由m与盲夹角为严,有斥斤即 n = (- 1, 0)或 n = (0, 1).三、解答题17. 【解】(I)T aB- aC= bccosA, bA-社cacosB,又AB- AC= BA- BC,bccosA= cacosB,由正弦定理,得 sinBcosA = sinAcosB ,即 sinAcosB sinBcosA=0,

29、. sin(A B) = 0 n V A BV n,二 A B= 0,即卩 A= B,A ABC为等腰三角 形-2 2 2 2Ab + c a c(n)由(I)知 a = b , a AB- AC bccosA bc - 2bcT c=2,二 k= 1.18. 【解】(I)由题意得 Im n = 3sinA cosA= 1,2sin(A 石)=1, sin(A & = 2,由A为锐角得A.6631 2(n )由(I)知 cosA=2,所以 f(x) = cos2x + 2si nx = 1 2si n x1 23+ 2sinx = 2(s inx ) + ,1因为x R,所以sinx 1,1,

30、因此,当sinx =时,f (x)有3最大值2当sinx = 1时,f(x)有最小值一3,所以所求函数f(x)的值域口3是3, J 19 【解】(I)由 齐 /亓,得 2sin 2A 1 cosA= 0,即 2cos2A+ cosA1亠1 = 0, cosA= 2或 cosA= 1.A 是厶ABC内角,cosA= 1 舍去,二 A= 3.3(n ) / b+ c = 3a,由正弦定理,sinB + sinC = 3sinA =32?2?3 B+ C= -3,sinB + sin( 5 B) =333 加:3-cosB+sinB = ?,即卩 sin(B + ) =了20 .【解】(I )由已知得: (3cos a 4)2 + 9sin 2 a = 9cos2a + (3sin a 4) 2,贝U sin a = cos a ,3?因为 a ( 一冗,0)a=.(n)sin a由(3cos a 4) 3cos3十、/口+ c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论