统计学(第三版课后习题答案) 贾俊平版_第1页
统计学(第三版课后习题答案) 贾俊平版_第2页
统计学(第三版课后习题答案) 贾俊平版_第3页
统计学(第三版课后习题答案) 贾俊平版_第4页
统计学(第三版课后习题答案) 贾俊平版_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、区分指标与标志,总量指标分类、分配数列、上限不在内原则、各种平均数之间的关系、平均发展指标!计算可能考的公式有:计划完成情况相对指标、结构(比例/比较/强度/动态)相对指标、各种平均数算法、众数、中位数、四分位数、平均差、标准差、标准差系数、偏态和峰度、发展速度和增长速度、总指数(很重要)、平均指标指数、重要经济指数的编制(上证指数、工业产品产量总指数、农副产品收购价格指数)统计学(第三版课后习题答案) 贾俊平版2.1 (1) 属于顺序数据。(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100 (3)

2、条形图(略)2.2 (1)频数分布表如下:40个企业按产品销售收入分组表按销售收入分组(万元)企业数(个)频率(%)向上累积向下累积企业数频率企业数频率100以下100110110120120130130140140以上591274312.522.530.017.510.07.55142633374012.535.065.082.592.5100.04035261473100.087.565.035.017.57.5合计40100.0 (2) 某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计4

3、0100.02.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)2530303535404045455046159610.015.037.522.515.0合计40100.0 直方图(略)。2.4 (1)排序略。(2)频数分布表如下: 100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650660226606705567068066680690141469070026267007101818710720131372073010107307403374075033合计100100 直方图(略)。 (3)茎叶图如下:65186614

4、56867134679681123334555889969001111222334455666778888997000112234566677888971002233567788972012256789973356741472.5 (1)属于数值型数据。(2)分组结果如下:分组天数(天)-25-206-20-158-15-1010-10-513-50120545107合计60 (3)直方图(略)。2.6 (1)直方图(略)。(2)自学考试人员年龄的分布为右偏。2.7 (1)茎叶图如下:A班树茎B班数据个数树 叶树叶数据个数035921440448429751224566777891211976

5、65332110601123468892398877766555554443332100700113449876655200812334566632220901145660100003(2)A班考试成绩的分布比较集中,且平均分数较高;B班考试成绩的分布比A班分散,且平均成绩较A班低。2.8 箱线图如下:(特征请读者自己分析)2.9 (1)=274.1(万元);Me=272.5 ;QL=260.25;QU=291.25。(2)(万元)。2.10 (1)甲企业平均成本19.41(元),乙企业平均成本18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大

6、,因此拉低了总平均成本。2.11 =426.67(万元);(万元)。2.12 (1)(2)两位调查人员所得到的平均身高和标准差应该差不多相同,因为均值和标准差的大小基本上不受样本大小的影响。(3)具有较大样本的调查人员有更大的机会取到最高或最低者,因为样本越大,变化的范围就可能越大。 2.13 (1)女生的体重差异大,因为女生其中的离散系数为0.1大于男生体重的离散系数0.08。 (2) 男生:=27.27(磅),(磅); 女生:=22.73(磅),(磅); (3)68%;(4)95%。2.14 (1)离散系数,因为它消除了不同组数据水平高地的影响。 (2)成年组身高的离散系数:; 幼儿组身高

7、的离散系数:; 由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。2.15 下表给出了一些主要描述统计量,请读者自己分析。方法A方法B方法C平均165.6平均128.73平均125.53中位数165中位数129中位数126众数164众数128众数126标准偏差2.13标准偏差1.75标准偏差2.77极差8极差7极差12最小值162最小值125最小值116最大值170最大值132最大值1282.16 (1)方差或标准差;(2)商业类股票;(3)(略)。2.17 (略)。第3章 概率与概率分布3.1设A女性,B工程师,AB女工程师,A+B女性或工程师(1)P(A)

8、4/121/3(2)P(B)4/121/3(3)P(AB)2/121/6(4)P(A+B)P(A)P(B)P(AB)1/31/31/61/23.2求这种零件的次品率,等于计算“任取一个零件为次品”(记为A)的概率。考虑逆事件“任取一个零件为正品”,表示通过三道工序都合格。据题意,有:于是 3.3设A表示“合格”,B表示“优秀”。由于BAB,于是 0.80.150.123.4 设A第1发命中。B命中碟靶。求命中概率是一个全概率的计算问题。再利用对立事件的概率即可求得脱靶的概率。 0.810.20.50.9 脱靶的概率10.90.1或(解法二):P(脱靶)P(第1次脱靶)P(第2次脱靶)0.20.

9、50.13.5 设A活到55岁,B活到70岁。所求概率为:3.6这是一个计算后验概率的问题。设A优质率达95,优质率为80,B试验所生产的5件全部优质。P(A)0.4,P()0.6,P(B|A)=0.955, P(B|)=0.85,所求概率为:决策者会倾向于采用新的生产管理流程。3.7 令A1、A2、A3分别代表从甲、乙、丙企业采购产品,B表示次品。由题意得:P(A1)0.25,P(A2)0.30, P(A3)0.45;P(B|A1)0.04,P(B|A2)0.05,P(B|A3)0.03;因此,所求概率分别为:(1) 0.250.040.300.050.450.030.0385(2)3.8据

10、题意,在每个路口遇到红灯的概率是p24/(24+36)0.4。设途中遇到红灯的次数X,因此,XB(3,0.4)。其概率分布如下表:xi0123P(X= xi)0.2160.4320.2880.064期望值(均值)1.2(次),方差0.72,标准差0.8485(次)3.9 设被保险人死亡数X,XB(20000,0.0005)。(1)收入2000050(元)100万元。要获利至少50万元,则赔付保险金额应该不超过50万元,等价于被保险人死亡数不超过10人。所求概率为:P(X 10)0.58304。(2)当被保险人死亡数超过20人时,保险公司就要亏本。所求概率为:P(X20)1P(X20)10.99

11、8420.00158(3)支付保险金额的均值50000E(X)50000200000.0005(元)50(万元)支付保险金额的标准差50000(X)50000(200000.00050.9995)1/2158074(元)3.10 (1)可以。当n很大而p很小时,二项分布可以利用泊松分布来近似计算。本例中,= np=200000.0005=10,即有XP(10)。计算结果与二项分布所得结果几乎完全一致。(2)也可以。尽管p很小,但由于n非常大,np和np(1-p)都大于5,二项分布也可以利用正态分布来近似计算。本例中,np=200000.0005=10,np(1-p)=200000.0005(1

12、-0.0005)=9.995,即有X N(10,9.995)。相应的概率为:P(X 10.5)0.51995,P(X20.5)0.853262。可见误差比较大(这是由于P太小,二项分布偏斜太严重)。【注】由于二项分布是离散型分布,而正态分布是连续性分布,所以,用正态分布来近似计算二项分布的概率时,通常在二项分布的变量值基础上加减0.5作为正态分布对应的区间点,这就是所谓的“连续性校正”。(3)由于p0.0005,假如n=5000,则np2.51.645,所以应该拒绝。6.6 3.11,拒绝。6.7 1.93,不拒绝。6.8 7.48,拒绝。6.9 206.22,拒绝。6.10 -5.145,拒

13、绝。6.11 1.36,不拒绝。6.12 -4.05,拒绝。6.13 8.28,拒绝。6.14 (1)检验结果如下:t-检验: 双样本等方差假设变量 1变量 2平均100.7109.9方差24.1157894733.35789474观测值2020合并方差28.73684211假设平均差0df38t Stat-5.427106029P(T=t) 单尾1.73712E-06t 单尾临界1.685953066P(T=t) 双尾3.47424E-06t 双尾临界2.024394234t-检验: 双样本异方差假设变量 1变量 2平均100.7109.9方差24.1157894733.35789474观测

14、值2020假设平均差0df37t Stat-5.427106029P(T=t) 单尾1.87355E-06t 单尾临界1.687094482P(T=t) 双尾3.74709E-06t 双尾临界2.026190487(2)方差检验结果如下:F-检验 双样本方差分析变量 1变量 2平均100.7109.9方差24.1157894733.35789474观测值2020df1919F0.722940991P(F4.07,应拒绝,说明X、联合起来对Y确有显著影响。(4)计算总成本对产量的非线性相关系数:因为因此总成本对产量的非线性相关系数为或R=0.9867466(5)评价:虽然经t检验各个系数均是显著

15、的,但与临界值都十分接近,说明t检验只是勉强通过,其把握并不大。如果取,则查t分布表得,这时各个参数对应的t统计量的绝对值均小于临界值,则在的显著性水平下都应接受的原假设。8.9 利用Excel输入X、和Y数据,用Y对X回归,估计参数结果为 t值=(9.46)(-6.515) 整理后得到:第9章 时间序列分析9.1 (1)30 = 301.3131 = 39.393(万辆)(2) (3)设按7.4%的增长速度n年可翻一番 则有 所以 n = log2 / log1.074 = 9.71(年)故能提前0.29年达到翻一番的预定目标。9.2 (1)(1)以1987年为基期,2003年与1987年相

16、比该地区社会商品零售额共增长: (2)年平均增长速度为=0.0833=8.33%(3) 2004年的社会商品零售额应为(亿元)9.3 (1)发展总速度平均增长速度= (2)(亿元)(3)平均数(亿元), 2002年一季度的计划任务:(亿元)。9.4 (1)用每股收益与年份序号回归得。预测下一年(第11年)的每股收益为元(2)时间数列数据表明该公司股票收益逐年增加,趋势方程也表明平均每年增长0.193元。是一个较为适合的投资方向。9.5 (1)移动平均法消除季节变动计算表年别季别鲜蛋销售量四项移动平均值移正平均值()2000年一季度13.1二季度13.910.875三季度7.910.310.58

17、75四季度8.69.7102001年一季度10.810.159.925二季度11.510.7510.45三季度9.711.711.225四季度1113.212.452002年一季度14.614.77513.9875二季度17.516.57515.675三季度1617.52517.05四季度18.218.1517.83752003年一季度18.418.37518.2625二季度2018.32518.35三季度16.9四季度18(2) (3)趋势剔出法季节比例计算表(一)年别季别时间序列号t鲜蛋销售量预测 鲜蛋销售量趋势剔除值2000年一季度113.19.3323529411.403718878二

18、季度213.99.9722058821.39387415三季度37.910.612058820.74443613四季度48.611.251911760.7643145612001年一季度510.811.891764710.908191531二季度611.512.531617650.917678812三季度79.713.171470590.736440167四季度81113.811323530.7964479272002年一季度914.614.451176471.010298368二季度1017.515.091029411.159629308三季度111615.730882351.0171076

19、四季度1218.216.370735291.1117399232003年一季度1318.417.010588241.081679231二季度142017.650441181.133116153三季度1516.918.290294120.923987329四季度161818.930147060.950864245上表中,其趋势拟合为直线方程。趋势剔出法季节比例计算表(二) 季度年度一季度二季度三季度四季度2000年1.4037191.3938740.7444360.7643152001年0.9081920.9176790.736440.7964482002年1.0102981.1596291.0

20、171081.111742003年1.0816791.1331160.9239870.950864平 均1.1009721.1510750.8554930.9058424.013381季节比率%1.0973011.1472370.8526410.902822400000根据上表计算的季节比率,按照公式计算可得:2004年第一季度预测值:2004年第二季度预测值:2004年第三季度预测值:2004年第四季度预测值:9.6 (1)用原始资料法计算的各月季节比率为:月份1月2月3月4月5月6月季节比率0.91950.78680.99311.00291.02881.0637月份7月8月9月10月11月

21、12月季节比率0.97220.98511.04071.03501.07651.0958平均法计算季节比率表: 年别月份2000年2001年2002年2003年平均季节比率%1月4.78 5.18 6.46 6.82 5.808750.9195 2月3.97 4.61 5.62 5.68 4.970250.7868 3月5.07 5.69 6.96 7.38 6.27350.9931 4月5.12 5.71 7.12 7.40 6.335751.0029 5月5.27 5.90 7.23 7.60 6.499251.0288 6月5.45 6.05 7.43 7.95 6.71951.0637

22、7月4.95 5.65 6.78 7.19 6.14150.9722 8月5.03 5.76 6.76 7.35 6.2230.9851 9月5.37 6.14 7.03 7.76 6.5741.0407 10月5.34 6.14 6.85 7.83 6.538251.0350 11月5.54 6.47 7.03 8.17 6.800251.0765 12月5.44 6.55 7.22 8.47 6.92251.0958 平均6.3172081.0000 季节比率的图形如下:(2)用移动平均法分析其长期趋势 年月序号工业总产值(亿元)移动平均移正平均Jan-0014.78 Feb-0023.9

23、7 Mar-0035.07 Apr-0045.12 May-0055.27 Jun-0065.45 5.13 Jul-0074.95 5.17 Aug-0085.03 5.22 Sep-0095.37 5.27 Oct-00105.34 5.32 Nov-00115.54 5.37 Dec-00125.44 5.11 5.43 Jan-01135.18 5.14 5.49 Feb-01144.61 5.20 5.55 Mar-01155.69 5.25 5.62 Apr-01165.71 5.30 5.69 May-01175.90 5.35 5.77 Jun-01186.05 5.40 5.

24、87 Jul-01195.65 5.46 5.97 Aug-01205.76 5.52 6.06 Sep-01216.14 5.58 6.18 Oct-01226.14 5.65 6.29 Nov-01236.47 5.73 6.40 Dec-01246.55 5.82 6.51 Jan-02256.46 5.93 6.60 Feb-02265.62 6.01 6.68 Mar-02276.96 6.12 6.74 Apr-02287.12 6.23 6.80 May-02297.23 6.35 6.85 Jun-02307.43 6.46 6.89 Jul-02316.78 6.55 6.9

25、1 Aug-02326.76 6.64 6.93 Sep-02337.03 6.71 6.96 Oct-02346.85 6.77 6.98 Nov-02357.03 6.82 7.02 Dec-02367.22 6.88 7.06 Jan-03376.82 6.91 7.10 Feb-03385.68 6.91 7.15 Mar-03397.38 6.94 7.23 Apr-03407.40 6.97 7.31 May-03417.60 7.00 7.41 Jun-03427.95 7.04 Jul-03437.19 7.08 Aug-03447.35 7.12 Sep-03457.76 7

26、.19 Oct-03467.83 7.27 Nov-03478.17 7.36 Dec-03488.47 7.46 原时间序列与移动平均的趋势如下图所示:9.7 (1)采用线性趋势方程法: 剔除其长期趋势。趋势分析法剔除长期趋势表:年月序号工业总产值(亿元)长期趋势值剔除长期趋势Jan-831477.9467.06721.023193Feb-832397.2474.07370.837844Mar-833507.3481.08021.054502Apr-834512.2488.08671.049404May-835527495.09321.064446Jun-836545502.09971.08

27、5442Jul-837494.7509.10620.971703Aug-838502.5516.11270.973625Sep-839536.5523.11921.025579Oct-8310533.5530.12571.006365Nov-8311553.6537.13221.030659Dec-8312543.9544.13870.999561Jan-8413518551.14520.939861Feb-8414460.9558.15170.825761Mar-8415568.7565.15821.006267Apr-8416570.5572.16470.997091May-8417590

28、579.17121.018697Jun-8418604.8586.17771.031769Jul-8419564.9593.18420.952318Aug-8420575.9600.19070.959528Sep-8421613.9607.19721.011039Oct-8422614614.20370.999668Nov-8423646.7621.21021.041032Dec-8424655.3628.21671.043111Jan-8525645.7635.22321.016493Feb-8526562.4642.22970.875699Mar-8527695.7649.23621.07

29、1567Apr-8528712656.24271.084964May-8529723.1663.24921.090239Jun-8530743.2670.25571.108831Jul-8531678677.26221.001089Aug-8532676684.26870.987916Sep-8533703691.27521.016961Oct-8534685.3698.28170.981409Nov-8535703.3705.28820.997181Dec-8536722.4712.29471.014187Jan-8637681.9719.30120.948003Feb-8638567.67

30、26.30770.781487Mar-8639737.7733.31421.005981Apr-8640739.6740.32070.999027May-8641759.6747.32721.016422Jun-8642794.8754.33371.053645Jul-8643719761.34020.944387Aug-8644734.8768.34670.956339Sep-8645776.2775.35321.001092Oct-8646782.5782.35971.000179Nov-8647816.5789.36621.034374Dec-8648847.4796.37271.064

31、075剔除长期趋势后分析其季节变动情况表: 年份月份1983年1984年1985年1986年季节比率%1月1.0231930.9398611.0164930.9480030.9818882月0.8378440.8257610.8756990.7814870.8301983月1.0545021.0062671.0715671.0059811.0345794月1.0494040.9970911.0849640.9990271.0326225月1.0644461.0186971.0902391.0164221.0474516月1.0854421.0317691.1088311.0536451.069

32、9227月0.9717030.9523181.0010890.9443870.9673748月0.9736250.9595280.9879160.9563390.9693529月1.0255791.0110391.0169611.0010921.01366810月1.0063650.9996680.9814091.0001790.99690511月1.0306591.0410320.9971811.0343741.02581212月0.9995611.0431111.0141871.0640751.030234(3)运用分解法可得到循环因素如下图:第10章 统计指数10.1 ; 。10.2 ;

33、。10.3 。10.4 ;。10.5 ; ;。10.6 ;。10.7 , , 10.8 依据有关公式列表计算各企业的工业经济效益综合指数如下:各企业经济效益综合指数一览表(标准比值法)参评指标标准比值或个体指数(%)权 数A企业B企业C企业D企业E企业产品销售率77.3592.3397.9792.7487.6115资金利税率90.04104.0699.6384.87103.3230成本利润率90.37112.9699.88101.0782.0515 增加值率87.24100.0098.2887.5992.0710劳动生产率93.47101.85116.84109.5987.0310资金周转率8

34、7.43101.09114.75103.8398.3620综合指数87.73102.41104.0395.0194.03排 名5213410.9 依据有关公式列表计算各企业的工业经济效益综合指数如下表:各企业经济效益综合指数一览表(改进的功效系数法)参评指标阈 值改 进 的 功 效 系 数权数满意值不允许值A企业B企业C企业D企业E企业产品销售率95.5074.5060.0089.52100.0090.2980.7615资金利税率14.1011.5070.77100.0090.7760.0098.4630成本利润率 9.50 6.9070.77100.0083.0884.6260.0015增加

35、值率29.0025.3060.00100.0094.5961.0875.1410劳动生产率7250540068.6579.89100.0090.2760.0010资金周转率 2.10 1.6060.0080.00100.0084.0076.0020综合指数65.5091.9793.9574.9778.05排 名52143上面两种方法给出的综合评价结果的差异表现在D、E两个企业的综合经济效益排名不同。原因在于两种方法的对比标准不同(以下具体说明)。第11章 统计决策11.1(1)根据最大的最大收益值准则,应该选择方案一。(2)根据最大的最小收益值准则,应该选择方案三。(3)方案一的最大后悔值为250,方案二的最大后悔值为200,方案三的最大后悔值为300,所以根据最小的最大后悔值准则,应选择方案二。(4)当乐观系数为0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论