八级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.3 正方形课件 (新版)新人教版_第1页
八级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.3 正方形课件 (新版)新人教版_第2页
八级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.3 正方形课件 (新版)新人教版_第3页
八级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.3 正方形课件 (新版)新人教版_第4页
八级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.3 正方形课件 (新版)新人教版_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、18.2.318.2.3正方形正方形 1.1.正方形的性质正方形的性质 正方形的四条边都正方形的四条边都 , ,四个角都是四个角都是 ; ;正方形既是矩形又是菱形正方形既是矩形又是菱形, ,它既有矩它既有矩 形的性质形的性质, ,又有菱形的性质又有菱形的性质. 2.2.正方形的判定正方形的判定 (1)(1)有一组邻边有一组邻边 的矩形是正方形的矩形是正方形. (2)(2)有一个角是有一个角是 的菱形是正方形的菱形是正方形. 3.3.正方形的轴对称性正方形的轴对称性 正方形是轴对称图形正方形是轴对称图形, ,它有它有 条对称轴条对称轴, ,分别是两条分别是两条 所在的直线和过所在的直线和过 对边

2、两个对边两个 的直线的直线. 相等相等直角直角 相等相等 直角直角 四四对角线对角线 中点中点 探究点一探究点一: :正方形的性质正方形的性质 【例例1 1】 ( (20182018遵义遵义) )如图如图, ,正方形正方形ABCDABCD的对角线交于点的对角线交于点O,O,点点E,FE,F分别在分别在AB,BCAB,BC上上(AE(AE BE),BE),且且EOF=90EOF=90,OE,DA,OE,DA的延长线交于点的延长线交于点M,OF,ABM,OF,AB的延长线交于点的延长线交于点N,N,连接连接MN.MN. (1)(1)求证求证:OM=ON;:OM=ON; 【导学探究导学探究】 1.1

3、.证证OAMOAM 可得可得OM=ON.OM=ON. OBNOBN (1)(1)证明证明: :因为四边形因为四边形ABCDABCD是正方形是正方形, , 所以所以OA=OB,DAO=45OA=OB,DAO=45,OBA=45,OBA=45, , 所以所以OAM=OBN=135OAM=OBN=135. . 因为因为EOF=90EOF=90,AOB=90,AOB=90, , 所以所以AOM=BON,AOM=BON, 在在OAMOAM与与OBNOBN中中,AOM=BON,OA=OB,OAM=OBN,AOM=BON,OA=OB,OAM=OBN, 所以所以OAMOAMOBN,OBN,所以所以OM=ON.

4、OM=ON. (2)(2)解解: :如图如图, ,过点过点 O O 作作 OHOHADAD 于点于点 H.H. 因为正方形因为正方形 ABCDABCD 的边长为的边长为 4,4,所以所以 OH=HA=OH=HA= 1 2 AD=AD= 1 2 4=2.4=2. 因为因为 E E 为为 OMOM 的中点的中点,O,OH HAE,AE, 所以所以 HM=2HA=4,HM=2HA=4,则则 OM=OM= 22 OHHM= = 22 24=2=25, , 因为因为 OM=ON,OM=ON,所以所以 MN=MN=2OM=OM=22 25=2=210. . (2)(2)若正方形若正方形ABCDABCD的边

5、长为的边长为4,E4,E为为OMOM的中点的中点, ,求求MNMN的长的长. . 【导学探究导学探究】 2.2.作作OHAD,OHAD,求求OMOM的长可得到的长可得到MN=MN= OM.OM. 2 (1) (1)在正方形中在正方形中, ,证明线段相等证明线段相等, ,通常证明三角形全等通常证明三角形全等; ; (2)(2)在正方形中在正方形中, ,计算线段的长度计算线段的长度, ,往往需要借助勾股定理和等腰直角三角形的性质往往需要借助勾股定理和等腰直角三角形的性质. . 【例例2 2】( (20182018舟山舟山) )如图如图, ,等边等边AEFAEF的顶点的顶点E,FE,F在矩形在矩形A

6、BCDABCD的边的边BC,CDBC,CD上上, ,且且CEF=CEF= 4545. .求证求证: :矩形矩形ABCDABCD是正方形是正方形. . 探究点二探究点二: :正方形的判定正方形的判定 【导学探究导学探究】 1.1.要证明矩形要证明矩形ABCDABCD是正方形是正方形, ,只要证明只要证明AB=AB= . 2.2.证明证明ABEABEADF,ADF,可得可得 . . ADAD AB=ADAB=AD 证明证明: :因为四边形因为四边形ABCDABCD是矩形是矩形, , 所以所以B=D=C=90B=D=C=90. . 因为因为AEFAEF是等边三角形是等边三角形, , 所以所以AE=A

7、F,AEF=AFE=60AE=AF,AEF=AFE=60, , 因为因为CEF=45CEF=45, ,所以所以CFE=CEF=45CFE=CEF=45, , 所以所以AEB=AFD=180AEB=AFD=180-45-45-60-60=75=75, , 在在ABEABE与与ADFADF中中,B=D,AEB=AFD,AE=AF,B=D,AEB=AFD,AE=AF, 所以所以ABEABEADF,ADF,所以所以AB=AD,AB=AD, 所以矩形所以矩形ABCDABCD是正方形是正方形. . (1) (1)已知菱形已知菱形, ,可证明一个内角为直角得到正方形可证明一个内角为直角得到正方形;(2);(

8、2)已知矩形已知矩形, , 可证明一组邻边相等得到正方形可证明一组邻边相等得到正方形. . 1.1.下列说法正确的是下列说法正确的是( ( ) ) (A)(A)有一个角是直角的四边形是正方形有一个角是直角的四边形是正方形 (B)(B)有一组邻边相等的四边形是正方形有一组邻边相等的四边形是正方形 (C)(C)有一组邻边相等的矩形是正方形有一组邻边相等的矩形是正方形 (D)(D)四条边都相等的四边形是正方形四条边都相等的四边形是正方形 2.(2.(20182018石家庄期中石家庄期中) )若正方形的对角线长为若正方形的对角线长为2 cm,2 cm,则这个正方形的面积为则这个正方形的面积为( ( )

9、 ) C C B B (A)4 cm(A)4 cm 2 2 (B)2 cm(B)2 cm 2 2 (C)(C) 2 cm cm 2 2 (D)2 (D)22 cm cm 2 2 3.3. ABCDABCD的对角线的对角线ACAC与与BDBD相交于点相交于点O,O,且且ACBD,ACBD,请添加一个条件请添加一个条件: : . . , ,使得使得 ABCDABCD为正方形为正方形. BAD=90BAD=90 ( (答案不唯一答案不唯一) ) 4.(4.(20182018会宁模拟会宁模拟) )如图如图, ,在正方形在正方形ABCDABCD中中,E,E为为CDCD上一点上一点, ,点点F F在在BE

10、BE上上,AF=AB,AF=AB,连接连接BD,BD, FD,FD,若若BAF=58BAF=58, ,则则BDFBDF的度数为的度数为 . 2929 5.5.如图如图, ,已知正方形已知正方形ABCD,PABCD,P是对角线是对角线ACAC上任意一点上任意一点,E,E为为ADAD上的点上的点, ,且且EPB=90EPB=90, , PMAD,PNAB,PMAD,PNAB,垂足分别为垂足分别为M,N.M,N. (1)(1)求证求证: :四边形四边形PMANPMAN是正方形是正方形; ; 证明证明: :(1)(1)因为四边形因为四边形ABCDABCD是正方形是正方形, , 所以所以BAD=90BAD=90,AC,AC平分平分BAD,BAD, 因为因为PMAD,PNAB,PMAD,PNAB, 所以所以PM=PN,PMA=PNA=90PM=PN,PMA=PNA=90, , 所以四边形所以四边形PMANPMAN是正方形是正方形. . (2)(2)求证求证:EM=BN.:EM=BN. 证明证明: :(2)(2)由由(1)(1)中证明可知中证明可知 PM=PN,PM=PN,MPN=90MPN=90, , 因为因为EPB=90EP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论