新部编人教版八年级数学上册《11.1.1三角形的边》精品PPT优质课件_第1页
新部编人教版八年级数学上册《11.1.1三角形的边》精品PPT优质课件_第2页
新部编人教版八年级数学上册《11.1.1三角形的边》精品PPT优质课件_第3页
新部编人教版八年级数学上册《11.1.1三角形的边》精品PPT优质课件_第4页
新部编人教版八年级数学上册《11.1.1三角形的边》精品PPT优质课件_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、11.1.1三角形的边,第十一章 三角形,导入新课,讲授新课,当堂练习,课堂小结,情境引入,1.认识三角形并会用几何语言表示三角形,了解三角 形分类. 2.掌握三角形的三边关系.(难点) 3.运用三角形三边关系解决有关的问题.(重点),导入新课,埃及金字塔,氨气分子结构示意图,飞机机翼,问题: (1)从古埃及的金字塔到现代的飞机,从宏伟的建筑 物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.,问题1:观察下面三角形的形成过程,说一说什么叫三角形?,定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.,问题2:三角形中有几条线段?有几个角

2、?,A,B,C,边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:A,B,C叫作三角形的内角,简称三角 形的角.,有三条线段,三个角,讲授新课,记法:三角形ABC用符号表示_. 边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表示为_.,ABC,c,a,b,边c,边b,边a,顶点C,角,角,角,顶点A,顶点B,B,C,A,在ABC中, AB边所对的角是: A所对的边是:,C,B C,再说几个对边与对角的关系试试.,三角形的对边与对角:,辨一辨:下列图形符合三角形的定义吗?,不符合,不符合,不符合,位置关系:不在同一直线上; 联接方式:首尾顺次相接.,三角

3、形应满足以下两个条件:,要点提醒,表示方法: 三角形用符号“”表示;记作“ABC”,读作“三角形ABC”,除此ABC还可记作BCA, CAB, ACB等.,基本要素: 三角形的边:边AB、BC、CA; 三角形的顶点:顶点A、B、C; 三角形的内角(简称为三角形的角): A、 B、 C.,特别规定: 三角形ABC的三边,一般的顶点A所对的边记作a,顶点B所对的边记作b,顶点C所对的边记作c.,5个,它们分别是ABE,ABC, BEC,BCD,ECD.,找一找:(1)图中有几个三角形?用符号表示出这些三角形?,(2)以AB为边的三角形有哪些?,ABC、ABE.,(3)以E为顶点的三角形有哪些?,

4、ABE 、BCE、 CDE.,(4)以D为角的三角形有哪些?, BCD、 DEC.,(5)说出BCD的三个角和三个顶点所对的边.,BCD的三个角是BCD、BDC、CBD.顶点B所对应的边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.,问题1:观察下列三角形,说一说,按照三角形内角的大小,三角形可以分为哪几类?,锐角三角形、 直角三角形、 钝角三角形.,腰,不等边三角形,等腰三角形,等边三角形,底边,顶角,底角,问题2:你能找出下列三角形各自的特点吗?,三条边各不相等的三角形叫做不等边三角形 ;,有两条边相等的三角形叫做等腰三角形;,三条边都相等的三角形叫做等边三角形,思考:等边三角形

5、和等腰三角形之间有什么关系?,总结归纳,不等边三角形,等腰三角形,我们可以把三角形按照三边情况进行分类,腰和底不等的等腰三角形,等边三角形(三边都相等 的三角形),判断:,(2)等边三角形是特殊的等腰三角形.( ),(1)一个钝角三角形一定不是等腰三角形.( ),(3)等腰三角形的腰和底一定不相等.( ),(4)等边三角形是锐角三角形.( ),(5)直角三角形一定不是等腰三角形.( ),在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?,C,B,A,AC+CBAB(两点之间线段最短),A,B,C,路线1:从A到C再到B的路线走; 路线2:沿线段

6、AB走.,请问:路线1、路线2哪条路程较短,你能说出根据吗?,解:路线2较短;两点之间线段最短.,由此可以得到:,归纳总结,三角形两边的和大于第三边. 三角形两边的差小于第三边.,议一议 1.在同一个三角形中,任意两边之和与第三边有什么 大小关系? 2.在同一个三角形中,任意两边之差与第三边有什么 大小关系? 3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论?理由是什么?,例1 有两根长度分别为5cm和8cm的木棒,用长度 为2cm的木棒与它们能摆成三角形吗?为什么?长 度为13cm的木棒呢?,判断三条线段是否可以组成三角形,只需 说明两条较短线段之和大于第三条线段即可.,

7、解:取长度为2cm的木棒时,由于2+5=78,出现了两边之和小于第三边的情况,所以它们不能摆成三角形.取长度为13cm的木棒时,由于5+8=13,出现了两边之和等于第三边的情况,所以它们也不能摆成三角形.,典例精析,例2 一个三角形的三边长分别为4,7,x,那么 x的取值范围是() A3x11 B4x7 C3x11 Dx3,解析:三角形的三边长分别为4,7,x,74x74,即3x11.,A,例3 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?,解:(1)设底边长为xcm,则腰长为2xcm

8、, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.,(2)因为长为4cm的边可能是腰,也可能是底边, 所以需要分情况讨论. 若底边长为4cm,设腰长为xcm,则有 4+2x=18. 解得 x=7. 若腰长为4cm,设底边长为xcm,则有 24+x=18. 解得 x=10. 因为4+410,不符合三角形两边的和大于第三边, 所以不能围成腰长是4cm的等腰三角形. 由以上讨论可知,可以围成底边长是4cm的等腰三角形.,例4 如图,D是ABC 的边AC上一点,AD=BD,试判断AC 与BC 的大小.,解:在BDC 中,,有 BD+DC BC(三角形的

9、 任意两边之和大于第三边).,又因为 AD = BD,,则BD+DC = AD+DC = AC,,所以 AC BC.,当堂练习,1.下列长度的三条线段能否组成三角形?为什么?,(1) 3,4,8 ( ) (2) 2,5,6 ( ) (3) 5,6,10 ( ) (4) 3,5,8 ( ),不能,能,能,不能,4.如果等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长为_.,3.如果等腰三角形的一边长是5cm,另一边长是8cm,则这个等腰三角形的周长为_.,2.五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其中三条线为边长可以构成_个三角形.,3,22cm,18cm或21cm,5.若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.,解:设第三边长为x,根据三角形的三边关系,可得,,7-2x7+2,即5x9,,又x为奇数,则第三边的长为7.,6.若a,b,c是ABC的三边长,化简|abc|bca|cab|.,解:根据三角形的三边关系,两边之和 大于第三边,得 abc0,bca0,cab0. |abc|bca|cab| bcacabcab 3cab.,拓展提升,课堂小结,三角形,定义及其基本要素,顶点、角、边,分类,按角分类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论