版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版八年级下学期期中考试数学试题一、单选题1. 下列式子中,属于最简二次根式的是a. b. c. d. 2. 在abc中,bc6,ac8,ab10,则该三角形为()a. 锐角三角形b. 直角三角形c. 纯角三角形d. 等腰直角三角形3. 下列判断错误的是( )a. 对角线相等四边形是矩形b. 对角线相互垂直平分的四边形是菱形c. 对角线相互垂直且相等的平行四边形是正方形d. 对角线相互平分的四边形是平行四边形4. 已知a,b,则a与b关系是()a. abb. ab1c. abd. ab55. 如图,将正方形oabc放在平面直角坐标系中,o是原点,点a的坐标为(1,),则点c的坐标为()a.
2、(,1)b. (1,)c. (,1)d. (,1)6. 如图,己知正方形abcd的边长为4, p是对角线bd上一点,pebc于点e, pfcd于点f,连接ap, ef,给出下列结论:pd=ec;四边形pecf的周长为8;apd一定是等腰三角形;ap=ef;ef的最小值为;apef,其中正确结论的序号为( )a. b. c. d. 二、填空题7. 二次根式中,x的取值范围是_8. 计算: _9. 若|a7|+(c25)2=0,则以a、b、c为三边的三角形的形状是_10. 如图,平行四边形的周长为,对角线交于点,点是边的中点,已知,则_11. 已知如图,以三边为斜边分别向外作等腰直角三角形,若斜边
3、,则图中阴影部分的面积为_12. 如图,在矩形中,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为_三、解答题13. 化简:14. 已知2,求的值15. 先化简,再求值:,其中x16. 某住宅小区有一块草坪如图所示已知ab3米,bc4米,cd12米,da13米,且abbc,求这块草坪的面积17. 在如图所示的33的方格中,画出3个面积小于9且大于1的不同的正方形(用阴影部分表示),而且所画正方形的顶点都在方格的顶点上,并写出相应正方形的边长和面积 18. 印度数学家什迦罗在其著作中提出过“荷花问题”:“平平湖水清可鉴,面上半
4、尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”此题的大致意思是:湖水中一枝荷花高出湖面半尺,被风一吹,荷花倾斜,正好与湖面持平,且荷花与原来位置的水平距离为二尺,问湖水有多深19. 如图,在abc中,d为ac边的中点,且dbbc,bc=4,cd=5(1)求db长;(2)在abc中,求bc边上高的长20. 如图,bd是边长为1的正方形abcd的对角线,be平分dbc交dc于点e,延长bc到点f,使cf=ce,连接df,交be的延长线于点g.(1)求证:bcedcf;(2)求cf长21. 如图,菱形abcd的对角线交于点o,点e是菱形外
5、一点,deac,cebd(1)求证:四边形deco是矩形;(2)连接ae交bd于点f,当adb30,de2时,求af的长度22. 阅读下列解题过程:=-2;=请回答下列问题:(1)观察上面的解题过程,请直接写出式子= ;(2)观察上面的解题过程,请直接写出式子= ;(3)利用上面所提供的解法,请求+的值23. 如图,在菱形abcd中,ab=4cm,bad=60动点e、f分别从点b、d同时出发,以1cm/s的速度向点a、c运动,连接af、ce,取af、ce的中点g、h,连接ge、fh设运动的时间为ts(0t4)(1)求证:afce;(2)当t为何值时,四边形ehfg为菱形;(3)试探究:是否存在
6、某个时刻t,使四边形ehfg为矩形,若存在,求出t的值,若不存在,请说明理由答案与解析一、单选题1. 下列式子中,属于最简二次根式的是a. b. c. d. 【答案】b【解析】【分析】【详解】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.,属于最简二次根式.故选b.2. 在abc中,bc6,ac8,ab10,则该三角形为()a. 锐角三角形b. 直角三角形c. 纯角三角形d. 等腰直角三角形【答案】b【解析】【分析】根据勾股定理
7、的逆定理解答即可【详解】解:在abc中,bc6,ac8,ab10,bc2+ac2ab2,abc是直角三角形,故选b【点睛】本题考查勾股定理的逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形3. 下列判断错误的是( )a. 对角线相等的四边形是矩形b. 对角线相互垂直平分的四边形是菱形c. 对角线相互垂直且相等的平行四边形是正方形d. 对角线相互平分的四边形是平行四边形【答案】a【解析】【分析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】、对角线相等的
8、四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大4. 已知a,b,则a与b的关系是()a. abb. ab1c. abd. ab5【答案】a【解析】【分析】将b进行分母有理化,然后进行比较即可【详解】解:b,a,所以a=b故选a【点睛】本题考查了分母有理化,利用平方差公式进行分母有理化是解题关键5. 如图,将正方形oabc放在平面直角坐标系中,o是原点,点a的坐标为(1,),则点c的坐标为()a.
9、 (,1)b. (1,)c. (,1)d. (,1)【答案】a【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点如图:过点a作adx轴于d,过点c作cex轴于e,根据同角的余角相等求出oad=coe,再利用“角角边”证明aod和oce全等,根据全等三角形对应边相等可得oe=ad,ce=od,然后根据点c在第二象限写出坐标即可点c的坐标为(-,1)故选a考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质6. 如图,己知正方形abcd的边长为4, p是对角线bd上一点,pebc于点e, pfcd于点f,连接ap, ef,给出下列结论:pd=ec;四边形pec
10、f的周长为8;apd一定是等腰三角形;ap=ef;ef的最小值为;apef,其中正确结论的序号为( )a. b. c. d. 【答案】a【解析】【分析】根据正方形的对角线平分对角的性质,得pdf是等腰直角三角形,在rtdpf中,dp2=df2+pf2=ec2+ec2=2ec2,求得dp=ec先证明四边形pecf为矩形,根据等腰直角三角形和矩形的性质可得其周长为2bc,则四边形pecf的周长为8;根据p的任意性可以判断apd不一定是等腰三角形;由可知,四边形pecf为矩形,则通过正方形的轴对称性,证明ap=ef;当ap最小时,ef最小,ef最小值等于2;证明pfh+hpf=90,则apef【详解
11、】如图,延长fp交ab与g,连pc,延长ap交ef与h,gfbc,dpf=dbc,四边形abcd是正方形dbc=45dpf=dbc=45,pdf=dpf=45,pf=ec=df,在rtdpf中,dp2=df2+pf2=ec2+ec2=2ec2,dp=ec故正确;pebc,pfcd,bcd=90,四边形pecf为矩形,四边形pecf的周长=2ce+2pe=2ce+2be=2bc=8,故正确;点p是正方形abcd的对角线bd上任意一点,adp=45度,当pad=45度或67.5度或90度时,apd是等腰三角形,除此之外,apd不是等腰三角形,故错误四边形pecf为矩形,pc=ef,由正方形为轴对称
12、图形,ap=pc,ap=ef,故正确;由ef=pc=ap,当ap最小时,ef最小,则当apbd时,即ap=bd=4=2时,ef的最小值等于2,故正确;gfbc,agp=90,bap+apg=90,apg=hpf,pfh+hpf=90,apef,故正确;本题正确的有:;故选:a【点睛】本题考查了正方形的性质,垂直的判定,等腰三角形的性质,勾股定理的运用本题难度较大,综合性较强,在解答时要认真审题二、填空题7. 二次根式中,x的取值范围是_【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须8. 计算: _【答案】【解析】【分析】先化简二次根式,再进行加减运算【详解
13、】故答案为:【点睛】考核知识点:二次根式加减化简二次根式,合并同类二次根式是关键9. 若|a7|+(c25)2=0,则以a、b、c为三边的三角形的形状是_【答案】直角三角形【解析】 , ,而 ,以a、b、c为三边的三角形是直角三角形.点睛:(1)利用这三个数的非负性,列出三个关于a、b、c的方程: ,从而得到a、b、c的值. (2) 判定三角形形状,除了根据边长大小关系判断外,若非等边或等腰三角形,一般利用勾股定理的逆定理进行判断是否能组成直角三角形:若,则以这三数为边长的三角形是直角三角形.10. 如图,平行四边形的周长为,对角线交于点,点是边的中点,已知,则_【答案】2【解析】分析】根据平
14、行四边形的性质求出ad的长,再根据中位线的性质即可求出oe的长【详解】解:,为的中点,为的中位线,故答案为:2【点睛】此题主要考查平行四边形与中位线的性质,解题的关键是熟知平行四边形的对边相等11. 已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_【答案】50【解析】【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍【详解】解:在rtabc中,ab2=ac2+bc2,ab=5,s阴影=sahc+sbfc
15、+saeb= =50故答案为:50.【点睛】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系12. 如图,在矩形中,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为_【答案】4【解析】【分析】根据矩形的性质,可得bc与ad的关系,根据矩形的判定定理,可得bpaq,构建一元一次方程,可得答案【详解】解;设最快x秒,四边形abpq成为矩形,由bpaq得3x202x解得x4,故答案为:4【点睛】本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键三、解答题13. 化简:【答案】+
16、2+1【解析】【分析】原式前三项化为最简二次根式,最后一项利用零指数幂法则计算即可得到结果【详解】解:原式=23+2+1=2+2+1=+2+1【点睛】本题考查了实数的运算,熟练掌握运算法则是解答本题的关键14. 已知2,求的值【答案】【解析】【分析】将=2,等号两边进行两次平方,即可得到的值,进而代入求出即可【详解】=24=636,34,【点睛】本题考查了完全平方公式的运用,重点先找到已知和求解的根式之间的联系,利用,将等式两边同时平方是解题的关键15. 先化简,再求值:,其中x【答案】2x,【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题【详
17、解】解:2x,当x1时,原式2(1)22【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法16. 某住宅小区有一块草坪如图所示已知ab3米,bc4米,cd12米,da13米,且abbc,求这块草坪的面积【答案】36平方米【解析】【分析】连接ac,根据勾股定理,求得ac,再根据勾股定理的逆定理,判断三角形acd是直角三角形这块草坪的面积等于两个直角三角形的面积之和【详解】连接ac,如图,abbc,abc=90ab=3米,bc=4米,ac=5米cd=12米,da=13米,cd2+ac2=144+25=169=132=da2,acd=90,acd为直角三角形,草坪的面积等于=sa
18、bc+sacd=342+5122=6+30=36(米2)【点睛】本题考查了勾股定理和勾股定理的逆定理17. 在如图所示的33的方格中,画出3个面积小于9且大于1的不同的正方形(用阴影部分表示),而且所画正方形的顶点都在方格的顶点上,并写出相应正方形的边长和面积 【答案】见解析【解析】【分析】根据要求利用勾股定理解决问题即可【详解】解:如图, 【点睛】本题考查作图-应用与设计,正方形的性质,勾股定理等知识,解题的关键是熟练掌握基础知识,属于中考常考题型18. 印度数学家什迦罗在其著作中提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二
19、尺远;能算诸君请解题,湖水如何知深浅?”此题的大致意思是:湖水中一枝荷花高出湖面半尺,被风一吹,荷花倾斜,正好与湖面持平,且荷花与原来位置的水平距离为二尺,问湖水有多深【答案】3.75尺【解析】【分析】先根据题意构造出直角三角形(即荷花的折断与不断时恰好构成直角三角形),再根据已知条件求解【详解】设水深x尺,则荷花茎的长度为x+0.5,根据勾股定理得:解得:x=3.75.答:湖水深3.75尺.故答案为:3.75尺.【点睛】此题考查勾股定理的应用,解题关键在于结合题意列出一元二次方程.19. 如图,在abc中,d为ac边的中点,且dbbc,bc=4,cd=5(1)求db的长;(2)在abc中,求
20、bc边上高的长【答案】(1)bd=3;(2)bc边上高的长为6【解析】【分析】(1)直接利用勾股定理得出bd的长即可;(2)利用三角形中位线定理得出bd=ae,即可得到结论【详解】解:(1)dbbc,bc=4,cd=5,bd=3;(2)延长cb,过点a作aecb延长线于点e,dbbc,aebc,aedb,d为ac边的中点,bd=ae,ae=6,即bc边上高长为6【点睛】本题考查勾股定理;三角形中位线定理20. 如图,bd是边长为1的正方形abcd的对角线,be平分dbc交dc于点e,延长bc到点f,使cf=ce,连接df,交be的延长线于点g.(1)求证:bcedcf;(2)求cf的长【答案】
21、(1)证明见解析;(2)-1.【解析】【分析】(1)利用正方形的性质,由全等三角形的判定定理sas,即可证得bcedcf;(2)由be平分dbc,bd是正方形abcd对角线,及bcedcf可得deg=bec,bgd=bcd=90=bgf.从而得到dbgfbg,根据全等三角形的性质可得bf的长,最后由勾股定理及线段的和差,即可求得cf的长度.【详解】(1)四边形abcd为正方形,cb=cd,bcd=90,dcf=180-bcd=90,在bce和dcf中,bcedcf;(2)bd是正方形abcd的对角线,dbc=abc=45,be平分dbc,ebc=dbc=22.5,由(1)知bcedcf,ebc
22、=fdc=22.5,deg=bec,bgd=bcd=90=bgf,在dbg和fbg中,dbgfbg,bd=bf,dg=fg,bd=,bf=,cf=bf-bc=-1.【点睛】本题考查了正方形的性质、等腰三角形的判定、全等三角形的判定与性质、勾股定理等,熟练掌握和灵活应用相关的性质定理与判定定理是解题的关键.21. 如图,菱形abcd的对角线交于点o,点e是菱形外一点,deac,cebd(1)求证:四边形deco是矩形;(2)连接ae交bd于点f,当adb30,de2时,求af的长度【答案】(1)详见解析;(2)【解析】【分析】(1)根据菱形的性质求出doc=90,根据平行四边形和矩形的判定即可得
23、出结论;(2)求出df=fo,解直角三角形求出od,求出of,根据勾股定理求出af即可【详解】(1)四边形abcd是菱形,acbd,即doc=90deac,cebd,四边形deco是平行四边形,四边形deco是矩形;(2)四边形abcd是菱形,ao=oc四边形deco是矩形,de=ocde=2,de=ao=2deac,oaf=def在afo和efd中,afoefd(aas),of=df在rtado中,tanadb,do=2,fo,af【点睛】本题考查了矩形的判定、菱形的性质、勾股定理、相似三角形的性质和判定等知识点,能综合运用定理进行推理和计算是解答此题的关键22. 阅读下列解题过程:=-2;
24、=请回答下列问题:(1)观察上面的解题过程,请直接写出式子= ;(2)观察上面的解题过程,请直接写出式子= ;(3)利用上面所提供的解法,请求+的值【答案】(1);(2) ;(3)9.【解析】【分析】(1)观察上面化简过程,发现:分母中的两个被开方数正好相差是1,所以运用平方差公式分母有理化后,分母变成了1,分子就是和分母构成平方差公式的式子;(2)(1)观察上面的化简过程,发现:分母中的两个被开方数正好相差是1,所以运用平方差公式分母有理化后,分母变成了1,分子就是和分母构成平方差公式的式子;(3)根据(2)的结论,化简各个二次根式,发现抵消的规律,计算出最后结果【详解】(1)=;(2)=;(3)+=1+=101=9【点睛】本题考查分母有理化的应用,解题的关键是读懂题意,掌握分母有理化的应用.23. 如图,在菱形abcd中,ab=4cm,bad=60动点e、f分别从点b、d同时出发,以1cm/s的速度向点a、c运动,连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《会计基础习题集》高职全套教学课件
- 心理效应 课件
- 2024年1月福建省普通高中学业水平合格性考试化学试题(解析版)
- 第二单元 习作:多彩的生活(教学)-六年级语文上册单元作文能力提升(统编版)
- 西京学院《现代信号处理》2021-2022学年第一学期期末试卷
- 西京学院《企业战略与风险管理》2023-2024学年第一学期期末试卷
- 西京学院《基础护理学》2022-2023学年第一学期期末试卷
- 齐白石介绍课件
- 移动机器人原理与技术 课件 第3、4章 移动机器人的传感器、移动机器人定位
- 西华师范大学《地理课程与教学论》2021-2022学年第一学期期末试卷
- 2024江苏江南水务股份限公司招聘17人高频500题难、易错点模拟试题附带答案详解
- 2024-2030年劳动防护用品市场发展现状调查及供需格局分析预测报告
- 2024年广东2024年客运从业资格证模拟考试题库
- 2024全国各地区英语中考真题汇编《第一期》
- 2024年广西公路发展中心招聘(657人)历年高频500题难、易错点模拟试题附带答案详解
- DB11T 1481-2024生产经营单位生产安全事故应急预案评审规范
- 2023-2024学年粤教版(2019)高中信息技术必修一《数据与计算》第五章第二节《数据的采集》教案
- 部编版2024-2025学年九年级语文上学期第一次月考试卷含答案
- 2024至2030年中国安检门行业市场全景调查及投资策略研究报告
- TSHUA 2023-0002 无人机飞控系统适航性检验检测技术规范
- 叩背的护理方法
评论
0/150
提交评论