



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2018版高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质 理2018版高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质 理 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质 理)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您
2、生活愉快 业绩进步,以下为2018版高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质 理的全部内容。20第八章 立体几何 8。4 直线、平面平行的判定与性质 理1线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行线面平行”)la,a,l,l性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行线线平行”)l,l,b,lb2。面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(
3、简记为“线面平行面面平行”)a,b,abp,a,b,性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行,a,b,ab【知识拓展】重要结论:(1)垂直于同一条直线的两个平面平行,即若a,a,则;(2)垂直于同一个平面的两条直线平行,即若a,b,则ab;(3)平行于同一个平面的两个平面平行,即若,则。【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行()(4)如果两个
4、平面平行,那么分别在这两个平面内的两条直线平行或异面()(5)若直线a与平面内无数条直线平行,则a。()(6)若,直线a,则a。()1(教材改编)下列命题中正确的是()a若a,b是两条直线,且ab,那么a平行于经过b的任何平面b若直线a和平面满足a,那么a与内的任何直线平行c平行于同一条直线的两个平面平行d若直线a,b和平面满足ab,a,b,则b答案d解析a中,a可以在过b的平面内;b中,a与内的直线可能异面;c中,两平面可相交;d中,由直线与平面平行的判定定理知,b,正确2设l,m为直线,为平面,且l,m,则“lm”是“”的()a充分不必要条件 b必要不充分条件c充要条件 d既不充分也不必要
5、条件答案b解析当平面与平面平行时,两个平面内的直线没有交点,故“lm”是“”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,lm是的必要不充分条件3(2016济南模拟)平面平面的一个充分条件是()a存在一条直线a,a,ab存在一条直线a,a,ac存在两条平行直线a,b,a,b,a,bd存在两条异面直线a,b,a,b,a,b答案d解析若l,al,a,a,则a,a,故排除a。若l,a,al,则a,故排除b。若l,a,al,b,bl,则a,b,故排除c.故选d.4(教材改编)如图,正方体abcda1b1c1d1中,e为dd1的中点,则bd1与平面aec的位置关系为_答案平行解析连接bd,
6、设bdaco,连接eo,在bdd1中,o为bd的中点,所以eo为bdd1的中位线,则bd1eo,而bd1平面ace,eo平面ace,所以bd1平面ace。5.如图是长方体被一平面所截得的几何体,四边形efgh为截面,则四边形efgh的形状为_答案平行四边形解析平面abfe平面dcgh,又平面efgh平面abfeef,平面efgh平面dcghhg,efhg.同理ehfg,四边形efgh的形状是平行四边形.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,四棱锥pabcd中,adbc,abbcad,e,f,h分别为线段ad,pc,cd的中点,ac与be交于o点,g是线段of上一
7、点(1)求证:ap平面bef;(2)求证:gh平面pad。证明(1)连接ec,adbc,bcad,bc綊ae,四边形abce是平行四边形,o为ac的中点又f是pc的中点,foap,fo平面bef,ap平面bef,ap平面bef。(2)连接fh,oh,f,h分别是pc,cd的中点,fhpd,fh平面pad.又o是be的中点,h是cd的中点,ohad,oh平面pad.又fhohh,平面ohf平面pad。又gh平面ohf,gh平面pad.命题点2直线与平面平行的性质例2(2017长沙调研)如图,四棱锥pabcd的底面是边长为8的正方形,四条侧棱长均为2。点g,e,f,h分别是棱pb,ab,cd,pc
8、上共面的四点,平面gefh平面abcd,bc平面gefh。(1)证明:ghef;(2)若eb2,求四边形gefh的面积(1)证明因为bc平面gefh,bc平面pbc,且平面pbc平面gefhgh,所以ghbc.同理可证efbc,因此ghef.(2)解如图,连接ac,bd交于点o,bd交ef于点k,连接op,gk.因为papc,o是ac的中点,所以poac,同理可得pobd。又bdaco,且ac,bd都在底面内,所以po底面abcd。又因为平面gefh平面abcd,且po平面gefh,所以po平面gefh.因为平面pbd平面gefhgk,所以pogk,且gk底面abcd,从而gkef.所以gk是
9、梯形gefh的高由ab8,eb2得ebabkbdb14,从而kbdbob,即k为ob的中点再由pogk得gkpo,即g是pb的中点,且ghbc4。由已知可得ob4,po6,所以gk3.故四边形gefh的面积sgk318.思维升华判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a,b,aba);(3)利用面面平行的性质定理(,aa);(4)利用面面平行的性质(,a,a,aa)如图所示,cd,ab均与平面efgh平行,e,f,g,h分别在bd,bc,ac,ad上,且cdab.求证:四边形efgh是矩形证明cd平面efgh,而平面efgh平面bcdef
10、,cdef.同理hgcd,efhg。同理hegf,四边形efgh为平行四边形cdef,heab,hef为异面直线cd和ab所成的角(或补角)又cdab,heef.平行四边形efgh为矩形题型二平面与平面平行的判定与性质例3如图所示,在三棱柱abca1b1c1中,e,f,g,h分别是ab,ac,a1b1,a1c1的中点,求证:(1)b,c,h,g四点共面;(2)平面efa1平面bchg.证明(1)g,h分别是a1b1,a1c1的中点,gh是a1b1c1的中位线,ghb1c1。又b1c1bc,ghbc,b,c,h,g四点共面(2)e,f分别是ab,ac的中点,efbc。ef平面bchg,bc平面b
11、chg,ef平面bchg.a1g綊eb,四边形a1ebg是平行四边形,a1egb。a1e平面bchg,gb平面bchg,a1e平面bchg.a1eefe,平面efa1平面bchg。引申探究1在本例条件下,若d为bc1的中点,求证:hd平面a1b1ba。证明如图所示,连接hd,a1b,d为bc1的中点,h为a1c1的中点,hda1b,又hd平面a1b1ba,a1b平面a1b1ba,hd平面a1b1ba.2在本例条件下,若d1,d分别为b1c1,bc的中点,求证:平面a1bd1平面ac1d。证明如图所示,连接a1c交ac1于点m,四边形a1acc1是平行四边形,m是a1c的中点,连接md,d为bc
12、的中点,a1bdm。a1b平面a1bd1,dm平面a1bd1,dm平面a1bd1.又由三棱柱的性质知,d1c1綊bd,四边形bdc1d1为平行四边形,dc1bd1。又dc1平面a1bd1,bd1平面a1bd1,dc1平面a1bd1,又dc1dmd,dc1,dm平面ac1d,平面a1bd1平面ac1d。思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行、“面面平行”的相互转化
13、(2016许昌三校第三次考试)如图所示,四边形abcd与四边形adef都为平行四边形,m,n,g分别是ab,ad,ef的中点求证:(1)be平面dmf;(2)平面bde平面mng.证明(1)如图所示,设df与gn交于点o,连接ae,则ae必过点o,连接mo,则mo为abe的中位线,所以bemo。因为be平面dmf,mo平面dmf,所以be平面dmf。(2)因为n,g分别为平行四边形adef的边ad,ef的中点,所以degn.因为de平面mng,gn平面mng,所以de平面mng.因为m为ab的中点,所以mn为abd的中位线,所以bdmn。因为bd平面mng,mn平面mng,所以bd平面mng。
14、因为de与bd为平面bde内的两条相交直线,所以平面bde平面mng.题型三平行关系的综合应用例4如图所示,在三棱柱abca1b1c1中,d是棱cc1的中点,问在棱ab上是否存在一点e,使de平面ab1c1?若存在,请确定点e的位置;若不存在,请说明理由解方法一存在点e,且e为ab的中点时,de平面ab1c1.下面给出证明:如图,取bb1的中点f,连接df,则dfb1c1,ab的中点为e,连接ef,ed,则efab1,b1c1ab1b1,平面def平面ab1c1.而de平面def,de平面ab1c1.方法二假设在棱ab上存在点e,使得de平面ab1c1,如图,取bb1的中点f,连接df,ef,
15、ed,则dfb1c1,又df平面ab1c1,b1c1平面ab1c1,df平面ab1c1,又de平面ab1c1,dedfd,平面def平面ab1c1,ef平面def,ef平面ab1c1,又ef平面abb1,平面abb1平面ab1c1ab1,efab1,点f是bb1的中点,点e是ab的中点即当点e是ab的中点时,de平面ab1c1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决如图所示,在四面体abcd中,截面efgh平行于对棱ab和cd,试问截面在什么位置时其截面面积最大?解ab平面efgh,平面efgh与平面a
16、bc和平面abd分别交于fg,eh.abfg,abeh,fgeh,同理可证efgh,截面efgh是平行四边形设aba,cdb,fgh (即为异面直线ab和cd所成的角或其补角)又设fgx,ghy,则由平面几何知识可得,两式相加得1,即y(ax),sefghfgghsin x(ax)sin x(ax)x0,ax0且x(ax)a为定值,x(ax),当且仅当xax时等号成立此时x,y。即当截面efgh的顶点e、f、g、h分别为棱ad、ac、bc、bd的中点时截面面积最大5立体几何中的探索性问题典例(12分)如图,在四棱锥sabcd中,已知底面abcd为直角梯形,其中adbc,bad90,sa底面ab
17、cd,saabbc2,tansda.(1)求四棱锥sabcd的体积;(2)在棱sd上找一点e,使ce平面sab,并证明规范解答解(1)sa底面abcd,tansda,sa2,ad3.2分由题意知四棱锥sabcd的底面为直角梯形,且saabbc2,vsabcdsa(bcad)ab2(23)2。6分(2)当点e位于棱sd上靠近d的三等分点处时,可使ce平面sab.8分证明如下:取sd上靠近d的三等分点为e,取sa上靠近a的三等分点为f,连接ce,ef,bf,则ef綊ad,bc綊ad,bc綊ef,cebf。10分又bf平面sab,ce平面sab,ce平面sab.12分解决立体几何中的探索性问题的步骤
18、:第一步:写出探求的最后结论;第二步:证明探求结论的正确性;第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范1(2017保定月考)有下列命题:若直线l平行于平面内的无数条直线,则直线l;若直线a在平面外,则a;若直线ab,b,则a;若直线ab,b,则a平行于平面内的无数条直线其中真命题的个数是()a1 b2 c3 d4答案a解析命题:l可以在平面内,不正确;命题:直线a与平面可以是相交关系,不正确;命题:a可以在平面内,不正确;命题正确故选a.2(2016滨州模拟)已知m,n,l1,l2表示直线,表示平面若m,n,l1,l2,l1l2m,则的一个充分条件是()am且l1 b
19、m且ncm且nl2 dml1且nl2答案d解析由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项d可推知.故选d.3对于空间中的两条直线m,n和一个平面,下列命题中的真命题是()a若m,n,则mnb若m,n,则mnc若m,n,则mnd若m,n,则mn答案d解析对a,直线m,n可能平行、异面或相交,故a错误;对b,直线m与n可能平行,也可能异面,故b错误;对c,m与n垂直而非平行,故c错误;对d,垂直于同一平面的两直线平行,故d正确4如图,l,m,n分别为正方体对应棱的中点,则平面lmn与平面pqr的位置关系是()a垂直 b相交不垂直c平行 d重合答案c解
20、析如图,分别取另三条棱的中点a,b,c,将平面lmn延展为平面正六边形ambncl,因为pqal,pram,且pq与pr相交,al与am相交,所以平面pqr平面ambncl,即平面lmn平面pqr.5(2016全国甲卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么;如果m,n,那么mn;如果,m,那么m;如果mn,,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有正确命题的编号)答案解析当mn,m,n时,两个平面的位置关系不确定,故错误,经判断知均正确,故正确答案为.6设,,是三个不同的平面,m,n是两条不同的直线,在命题“m,n,且_,则mn中的横线处
21、填入下列三组条件中的一组,使该命题为真命题,n;m,n;n,m.可以填入的条件有_答案或解析由面面平行的性质定理可知,正确;当n,m时,n和m在同一平面内,且没有公共点,所以平行,正确7在正四棱柱abcda1b1c1d1中,o是底面abcd的中心,p是dd1的中点,设q是cc1上的点,则点q满足条件_时,有平面d1bq平面pao。答案q为cc1的中点解析假设q为cc1的中点因为p为dd1的中点,所以qbpa。连接db,因为o是底面abcd的中心,所以d1bpo,又d1b平面pao,qb平面pao,且papo于p,所以d1b平面pao,qb平面pao,又d1bqb于b,所以平面d1bq平面pao
22、。故点q满足条件,q为cc1的中点时,有平面d1bq平面pao.8将一个真命题中的“平面”换成“直线、“直线换成“平面”后仍是真命题,则该命题称为“可换命题”给出下列四个命题:垂直于同一平面的两直线平行;垂直于同一平面的两平面平行;平行于同一直线的两直线平行;平行于同一平面的两直线平行其中是“可换命题”的是_(填命题的序号)答案解析由线面垂直的性质定理可知是真命题,且垂直于同一直线的两平面平行也是真命题,故是“可换命题;因为垂直于同一平面的两平面可能平行或相交,所以是假命题,不是“可换命题;由公理4可知是真命题,且平行于同一平面的两平面平行也是真命题,故是“可换命题”;因为平行于同一平面的两条
23、直线可能平行、相交或异面,故是假命题,故不是“可换命题9。如图,空间四边形abcd的两条对棱ac、bd的长分别为5和4,则平行于两条对棱的截面四边形efgh在平移过程中,周长的取值范围是_答案(8,10)解析设k,1k,gh5k,eh4(1k),周长82k.又0k1,周长的取值范围为(8,10)*10.在三棱锥sabc中,abc是边长为6的正三角形,sasbsc15,平面defh分别与ab,bc,sc,sa交于点d,e,f,h。d,e分别是ab,bc的中点,如果直线sb平面defh,那么四边形defh的面积为_答案解析如图,取ac的中点g,连接sg,bg。易知sgac,bgac,sgbgg,故ac平面sgb,所以acsb。因为sb平面defh,sb平面sab,平面sab平面defhhd,则sbhd.同理sbfe。又d,e分别为ab,bc的中点,则h,f也为as,sc的中点,从而得hf綊ac綊de,所以四边形defh为平行四边形又acsb,sbhd,deac,所以dehd,所以四边形defh为矩形,其面积shfhd(ac)(sb)。11.如图,e、f、g、h分别是正方体abcda1b1c1d1的棱bc、cc1、c1d1、aa1的中点求证:(1)eg平面bb1d1d;(2)平面bdf平面b1d1h.证明(1)取b1d1的中点o
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水溶肥质量管理办法
- 学校文艺室管理办法
- 学校损耗品管理办法
- 垃圾中转站管理办法
- 易制毒现场管理办法
- 医疗大数据管理办法
- 扶贫网格化管理办法
- 吐鲁番草原管理办法
- 时间与效能管理办法
- 村红白理事管理办法
- 民警心理健康辅导讲座
- 政务接待培训课件
- 空调维修保养售后服务承诺书范文
- 2025年云南高考真题化学试题答案
- 领导调研国有企业调研报告
- 护士换错药不良事件讲课件
- 护理病人安全 保障病人的安全与隐私
- 公司能量隔离挂牌上锁管理制度附能量隔离与介质、工况对应关系参考表
- (高清版)DB62∕T 446-2019 河湖及水利工程土地划界标准
- DB33-T 2099-2025 高速公路边坡养护技术规范
- 护渔队伍考核管理制度
评论
0/150
提交评论