一元二次方程根与系数的关系习题_第1页
一元二次方程根与系数的关系习题_第2页
一元二次方程根与系数的关系习题_第3页
一元二次方程根与系数的关系习题_第4页
一元二次方程根与系数的关系习题_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1、 一元二次方程的求根公式为 2、 一元二次方程根的判别式为:(1) 当时,方程有两个不相等的实数根。(2) 当时,方程有两个相等的实数根。(3) 当时,方程没有实数根。反之:方程有两个不相等的实数根,则 ;方程有两个相等的实数根,则 ;方程没有实数根,则 。韦达定理相关知识1若一元二次方程有两个实数根,那么 , 。我们把这两个结论称为一元二次方程根与系数的关系,简称韦达定理。2、如果一元二次方程的两个根是,则 , 。3、以为根的一元二次方程(二次项系数为1)是4、在一元二次方程中,有一根为0,则 ;有一根为1,则 ;有一根为,则 ;若两根互为倒数,则 ;若两根互为相反数,则 。5、二次三项

2、式的因式分解(公式法) 在分解二次三项式的因式时,如果可用公式求出方程 的两个根,那么如果方程无根,则此二次三项式不能分解.基础运用例1:已知方程的一个根是1,则另一个根是 , 。变式训练:1、已知是方程的一个根,则另一根和的值分别是多少?2、方程的两个根都是整数,则的值是多少?例2:设是方程,的两个根,利用根与系数关系求下列各式的值:(1) (2) (3) (4) 变式训练:1、 已知关于的方程有实数根,求满足下列条件的值:(1)有两个实数根。 (2)有两个正实数根。 (3)有一个正数根和一个负数根。 (4)两个根都小于2。2、已知关于的方程。(1)求证:方程必有两个不相等的实数根。(2)取

3、何值时,方程有两个正根。(3)取何值时,方程有两异号根,且负根绝对值较大。(4)取何值时,方程到少有一根为零?选用例题:例3:已知方程的两根之比为1:2,判别式的值为1,则是多少?例4、已知关于的方程有两个实数根,并且这两个根的平方和比两个根的积大16,求的值。例5、若方程与有一个根相同,求的值。基础训练:1关于的方程中,如果,那么根的情况是( )(A)有两个相等的实数根 (B)有两个不相等的实数根(C)没有实数根 (D)不能确定2设是方程的两根,则的值是( )(A)15 (B)12 (C)6 (D)33下列方程中,有两个相等的实数根的是( )(A) 2y2+5=6y(B)x2+5=2x(C)

4、x2x+2=0(D)3x22x+1=04以方程x22x30的两个根的和与积为两根的一元二次方程是( )(A) y2+5y6=0 (B)y2+5y6=0 (C)y25y6=0 (D)y25y6=05如果x1,x2是两个不相等实数,且满足x122x11,x222x21,那么x1x2等于( )(A)2 (B)2 (C)1 (D)16.关于x的方程ax22x10中,如果a0,那么根的情况是( )(A)有两个相等的实数根 (B)有两个不相等的实数根(C)没有实数根 (D)不能确定7.设x1,x2是方程2x26x30的两根,则x12x22的值是( )(A)15 (B)12 (C)6 (D)38如果一元二次

5、方程x24xk20有两个相等的实数根,那么k 9如果关于x的方程2x2(4k+1)x2 k210有两个不相等的实数根,那么k的取值范围是 10已知x1,x2是方程2x27x40的两根,则x1x2 ,x1x2 ,(x1x2)2 11若关于x的方程(m22)x2(m2)x10的两个根互为倒数,则m .二、能力训练:1、 不解方程,判别下列方程根的情况:(1)x2x=5 (2)9x26+2=0 (3)x2x+2=02、 当m= 时,方程x2+mx+4=0有两个相等的实数根; 当m= 时,方程mx2+4x+1=0有两个不相等的实数根;3、 已知关于x的方程10x2(m+3)x+m7=0,若有一个根为0

6、,则m= , 这时方程的另一个根是 ;若两根之和为,则m= ,这时方程的 两个根为 .4、 已知3是方程x2+mx+7=0的一个根,求另一个根及m的值。5、 求证:方程(m2+1)x22mx+(m2+4)=0没有实数根。6、 求作一个一元二次方程使它的两根分别是1和1+。7、 设x1,x2是方程2x2+4x3=0的两根,利用根与系数关系求下列各式的值:(1) (x1+1)(x2+1) (2)+ (3)x12+ x1x2+2 x18、如果x22(m+1)x+m2+5是一个完全平方式,则m= ;9、方程2x(mx4)=x26没有实数根,则最小的整数m= ;10、已知方程2(x1)(x3m)=x(m

7、4)两根的和与两根的积相等,则m= ;11、设关于x的方程x26x+k=0的两根是m和n,且3m+2n=20,则k值为 ; 12、设方程4x27x+3=0的两根为x1,x2,不解方程,求下列各式的值:(1) x12+x22 (2)x1x2(3)(4)x1x22x113、实数、分别满足方程1929910和且199920求代数式的值。14、已知a是实数,且方程x2+2ax+1=0有两个不相等的实根,试判别方程x2+2ax+1(a2x2a21)=0有无实根?15、求证:不论k为何实数,关于x的式子(x1)(x2)k2都可以分解成两个一次因式的积。16、实数K在什么范围取值时,方程有实数正根?训练(一

8、)1、 不解方程,请判别下列方程根的情况;(1)2t2+3t4=0, ; (2)16x2+9=24x, ;(3)5(u2+1)7u=0, ;2、 若方程x2(2m1)x+m2+1=0有实数根,则m的取值范围是 ;3、 一元二次方程x2+px+q=0两个根分别是2+和2,则p= ,q= ;4、 已知方程3x219x+m=0的一个根是1,那么它的另一个根是 ,m= ;5、 若方程x2+mx1=0的两个实数根互为相反数,那么m的值是 ;6、 m,n是关于x 的方程x2-(2m-1)x+m2+1=0的两个实数根,则代数式 mn= 。7、 已知关于x的方程x2(k+1)x+k+2=0的两根的平方和等于6

9、,求k的值;8、 如果和是方程2x2+3x1=0的两个根,利用根与系数关系,求作一个一 元二次方程,使它的两个根分别等于+和+;9、 已知a,b,c是三角形的三边长,且方程(a2+b2+c2)x2+2(a+b+c)x+3=0有两个相 等的实数根,求证:这个三角形是正三角形10.取什么实数时,二次三项式2x2(4k+1)x+2k21可因式分解.11.已知关于X的一元二次方程222(3)10的两实数根为,,若,求的取值范围。训练(二)1、 已知方程x23x+1=0的两个根为,,则+= , = ;2、 如果关于x的方程x24x+m=0与x2x2m=0有一个根相同,则m的值为 ;3、 已知方程2x23

10、x+k=0的两根之差为2,则k= ;4、 若方程x2+(a22)x3=0的两根是1和3,则a= ;5、 方程4x22(a-b)xab=0的根的判别式的值是 ;6、 若关于x的方程x2+2(m1)x+4m2=0有两个实数根,且这两个根互为倒数,那么m的值为 ;7、 已知p0,q0,则一元二次方程x2+px+q=0的根的情况是 ;8、 以方程x23x1=0的两个根的平方为根的一元二次方程是 ;9、 设x1,x2是方程2x26x+3=0的两个根,求下列各式的值:(1)x12x2+x1x22 (2) 10m取什么值时,方程2x2(4m+1)x+2m21=0(1) 有两个不相等的实数根,(2)有两个相等

11、的实数根,(3)没有实数根;11设方程x2+px+q=0两根之比为1:2,根的判别式=1,求p,q的值。12是否存在实数,使关于的方程的两个实根,满足,如果存在,试求出所有满足条件的的值,如果不存在,请说明理由。一元二次方程根与系数关系专题训练主编:闫老师1、如果方程ax2+bx+c=0(a0)的两根是x1、x2,那么x1+x2= ,x1x2= 。2、已知x1、x2是方程2x2+3x4=0的两个根,那么:x1+x2= ;x1x2= ; ;x21+x22= ;(x1+1)(x2+1)= ;x1x2= 。3、以2和3为根的一元二次方程(二次项系数为1)是 。4、如果关于x的一元二次方程x2+x+a

12、=0的一个根是1,那么另一个根是 ,a的值为 。5、如果关于x的方程x2+6x+k=0的两根差为2,那么k= 。6、已知方程2x2+mx4=0两根的绝对值相等,则m= 。7、一元二次方程px2+qx+r=0(p0)的两根为0和1,则qp= 。8、已知方程x2mx+2=0的两根互为相反数,则m= 。9、已知关于x的一元二次方程(a21)x2(a+1)x+1=0两根互为倒数,则a= 。10、已知关于x的一元二次方程mx24x6=0的两根为x1和x2,且x1+x2=2,则m= ,(x1+x2)= 。11、已知方程3x2+x1=0,要使方程两根的平方和为,那么常数项应改为 。12、已知一元二次方程的两

13、根之和为5,两根之积为6,则这个方程为 。13、若、为实数且+3+(2)2=0,则以、为根的一元二次方程为 。(其中二次项系数为1)14、已知关于x的一元二次方程x22(m1)x+m2=0。若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。15、已知方程x2+4x2m=0的一个根比另一个根小4,则= ;= ;m= 。16、已知关于x的方程x23x+k=0的两根立方和为0,则k= 17、已知关于x的方程x23mx+2(m1)=0的两根为x1、x2,且,则m= 。18、关于x的方程2x23x+m=0,当 时,方程有两个正数根;当m 时,方程有一个正根,一个负根;当m 时,

14、方程有一个根为0。19、若方程x24x+m=0与x2x2m=0有一个根相同,则m= 。20、求作一个方程,使它的两根分别是方程x2+3x2=0两根的二倍,则所求的方程为 。21、一元二次方程2x23x+1=0的两根与x23x+2=0的两根之间的关系是 。22、已知方程5x2+mx10=0的一根是5,求方程的另一根及m的值。23、已知2+是x24x+k=0的一根,求另一根和k的值。24、证明:如果有理系数方程x2+px+q=0有一个根是形如A+的无理数(A、B均为有理数),那么另一个根必是A。25、不解方程,判断下列方程根的符号,如果两根异号,试确定是正根还是负根的绝对值大?26、已知x1和x2

15、是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:x31x2+x1x32 27、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:28、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值: (x21x22)2 29、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:x1x230、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:31、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:x51x22+x21x5232、求一个

16、一元二次方程,使它的两个根是2+和2。33、已知两数的和等于6,这两数的积是4,求这两数。 34、造一个方程,使它的根是方程3x27x+2=0的根;(1)大3;(2)2倍;(3)相反数;(4)倒数。35、方程x2+3x+m=0中的m是什么数值时,方程的两个实数根满足:(1)一个根比另一个根大2;(2)一个根是另一个根的3倍;(3)两根差的平方是17。36、已知关于x的方程2x2(m1)x+m+1=0的两根满足关系式x1x2=1,求m的值及两个根。37、是关于x的方程4x24mx+m2+4m=0的两个实根,并且满足,求m的值。38、已知一元二次方程8x2(2m+1)x+m7=0,根据下列条件,分

17、别求出m的值:(1)两根互为倒数;(2)两根互为相反数;(3)有一根为零;(4)有一根为1;(5)两根的平方和为。39、已知方程x2+mx+4=0和x2(m2)x16=0有一个相同的根,求m的值及这个相同的根。 40、已知关于x的二次方程x22(a2)x+a25=0有实数根,且两根之积等于两根之和的2倍,求a的值。41、已知方程x2+bx+c=0有两个不相等的正实根,两根之差等于3,两根的平方和等于29,求b、c的值。42、设:3a26a11=0,3b26b11=0且ab,求a4b4的值。43、试确定使x2+(ab)x+a=0的根同时为整数的整数a的值。44、已知一元二次方程(2k3)x2+4

18、kx+2k5=0,且4k+1是腰长为7的等腰三角形的底边长,求:当k取何整数时,方程有两个整数根。45、已知:、是关于x的方程x2+(m2)x+1=0的两根,求(1+m+2)(1+m+2)的值。46、已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。47、已知x1、x2是关于x的方程x2+m2x+n=0的两个实数根;y1、y2是关于y的方程y2+5my+7=0的两个实数根,且x1y1=2,x2y2=2,求m、n的值。48、关于x的方程m2x2+(2m+3)x+1=0有两个乘积为1的实根,x2+2(a+m)x+2am

19、2+6m4=0有大于0且小于2的根。求a的整数值。49、关于x的一元二次方程3x2(4m21)x+m(m+2)=0的两实根之和等于两个实根的倒数和,求m的值。50、已知:、是关于x的二次方程:(m2)x2+2(m4)x+m4=0的两个不等实根。(1)若m为正整数时,求此方程两个实根的平方和的值;(2)若2+2=6时,求m的值。51、已知关于x的方程mx2nx+2=0两根相等,方程x24mx+3n=0的一个根是另一个根的3倍。求证:方程x2(k+n)x+(km)=0一定有实数根。52、关于x的方程=0,其中m、n分别是一个等腰三角形的腰长和底边长。(1)求证:这个方程有两个不相等的实根;(2)若

20、方程两实根之差的绝对值是8,等腰三角形的面积是12,求这个三角形的周长。53、已知关于x的一元二次方程x2+2x+p2=0有两个实根x1和x2(x1x2),在数轴上,表示x2的点在表示x1的点的右边,且相距p+1,求p的值。54、已知关于x的一元二次方程ax2+bx+c=0的两根为、,且两个关于x的方程x2+(+1)x+2=0与x2+(+1)x+2=0有唯一的公共根,求a、b、c的关系式。55、如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根、,那么(1)2+(1)2的最小值是多少?56、已知方程2x25mx+3n=0的两根之比为23,方程x22nx+8m=0的两根

21、相等(mn0)。求证:对任意实数k,方程mx2+(n+k1)x+k+1=0恒有实数根。57、(1)方程x23x+m=0的一个根是,则另一个根是 。(2)若关于y的方程y2my+n=0的两个根中只有一个根为0,那么m,n应满足 。58、不解方程,求下列各方程的两根之和与两根之积x2+3x+1=0;59、不解方程,求下列各方程的两根之和与两根之积3x22x1=0;60、不解方程,求下列各方程的两根之和与两根之积2x2+3=0;61、不解方程,求下列各方程的两根之和与两根之积2x2+5x=0。62、已知关于x的方程2x2+5x=m的一个根是2,求它的另一个根及m的值。63、已知关于x的方程3x21=

22、tx的一个根是2,求它的另一个根及t的值。64、设x1,x2是方程3x22x2=0的两个根,利用根与系数的关系,求下列各式的值:(1)(x14)(x24);(2)x13x24+x14x23;(3);(4)x13+x23。65、设x1,x2是方程2x24x+1=0的两个根,求x1x2的值。66、已知方程x2+mx+12=0的两实根是x1和x2,方程x2mx+n=0的两实根是x1+7和x2+7, 求m和n的值。67、以2,3为根的一元二次方程是 ( ) A.x2+x+6=0 B.x2+x6=0C.x2x+6=0 D.x2x6=068、以3,1为根,且二次项系数为3的一元二次方程是 ( )A.3x2

23、2x+3=0 B.3x2+2x3=0C.3x26x9=0 D.3x2+6x9=069、两个实数根的和为2的一元二次方程可能是 ( ) A.x2+2x3=0 B.x22x+3=0C.x2+2x+3=0 D.x22x3=070、以3,2为根的一元二次方程为 ,以,为根的一元二次方程为 ,以5,5为根的一元二次方程为 ,以4,为根的一元二次方程为 。71、已知两数之和为7,两数之积为12,求这两个数。72、已知方程2x23x3=0的两个根分别为a,b,利用根与系数的关系,求一个一元二次方程 ,使它的两个根分别是:(1)a+1.b+1(2)73、一个直角三角形的两条直角边长的和为6cm,面积为cm2,

24、求这个直角三角形斜边的长 。74、在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与3;小王看错了q,解得方程的根为4与2。这个方程的根应该是什么?75、关于x的方程x2ax3=0有一个根是1,则a= ,另一个根是 。76、若分式的值为0,则x的值为 ( )A.1 B.3 C.1或3 D.3或177、若关于y的一元二次方程y2+my+n=0的两个实数根互为相反数,则 ( )A.m=0且n0 B.n=0且m0C.m=0且n0 D.n=0且m078、已知x1,x2是方程2x2+3x1=0的两个根,利用根与系数的关系,求下列各式的值:(1)(2x13)(2x23);(2)x13x2+x1x23。79、已知a2=1a,b2=1b,且ab,求(a1)(b1)的值。80、如果x=1是方程2x23mx+1=0的一个根,则m= ,另一个根为 。81、已知m2+m4=0,m,n为实数,且,则= 。82、两根为3和5的一元二次方程是 ( ) A.x22x15=0 B.x22x+15=0C.x2+2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论