



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、号位封座密号场不考订装号证考准只卷名姓此级班绝密 启用前2018 年普通高等学校招生全国统一考试仿真卷理科数学(六)本试题卷共8 页, 23 题(含选考题)。全卷满分150 分。考试用时120 分钟。祝考试顺利注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非
2、答题区域均无效。4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。5、考试结束后,请将本试题卷和答题卡一并上交。第 卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。12018漳州调研 在复平面内,复数 z1 和 z2 对应的点分别是 A 2,1和B 0,1,则 z1z2()A 1 2iB 1 2iC 1 2iD 1 2i晋中调研已知集合Mx | x 1 , Nx 2x1,则 MN ()2 2018A x | 0 x 1B x | x 0C
3、 x | x 1D32018 南平质检 已知函数 fxln x ,若 f x1 1,则实数 x的取值范围是()A ,e 1B 0,C 1,e1D e1,42018孝义模拟 若 tan1 ,则 cos 2等于()43A 3B 1C 1D 352352018 漳州调研 已知向量 a2, 1 , A1,x , B 1,1 ,若 aAB ,则实数 x的值为()A5B0C1D562018 黄山一模 九章算术卷 5商功记载一个问题 “今有圆堡瑽, 周四丈八尺,高一丈一尺问积几何?答曰:二千一百一十二尺术曰:周自相乘,以高乘之,十二而一”这里所说的圆堡瑽就是圆柱体, 它的体积为“周自相乘,以高乘之,十二而一
4、”就是说:圆堡瑽(圆柱体)的体积为 V1高),则由此可推得(底面圆的周长的平方12圆周率 的取值为()A 3B 3.1C 3.14D 3.272018 宁德质检 已知三角形 ABC 中, ABAC22 , DB 3AD ,连接 CD 并取线段 CD 的中点 F ,则 AF CD 的值为()A 5B 15C5D 24282018 海南二模 已知正项数列an 满足 an122an2an 1an 0 ,设 bnlog2 an 1 ,则a1数列 bn 的前 n项和为()A nn n1nn1n1 n2BC2D223xy392018 集宁一中 设不等式组x2 y4 所表示的平面区域为 M ,在 M 内任取
5、一点x0, y0P x, y , xy 1 的概率是()A 1B 2C 3D 47777102018 江西联考 如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()理科数学试卷第 1 页(共 8 页)理科数学试卷第 2 页(共 8 页)A 51B 41C 41D 3142x1, x1 ,则函数11 2018 深圳中学 e 为自然对数的底数,已知函数fx8ln x1,x1y fx ax有唯一零点的充要条件是()A a1 或 a1或 a9B a1a1e281 或28eC a1或 12a9D a1 或 a9e8812 2018 华师附中 已知抛物
6、线 E : y22 px( p0)的焦点为 F , O 为坐标原点,点Mp ,9 , Np , 1,连结OM ,ON分别交抛物线 E于点 A,B,且A,B,F22三点共线,则 p 的值为()A 1B2C3D4第 卷本卷包括必考题和选考题两部分。第 (13)(21) 题为必考题,每个试题考生都必须作答。第 (22)(23) 题为选考题,考生根据要求作答。二、填空题:本大题共4 小题,每小题5 分。132018 朝阳期末 执行如图所示的程序框图,输出S 的值为 _142018 常州期中 如图,在平面直角坐标系xOy 中,函数 ysinx0 ,0 的图像与 x轴的交点 A , B , C 满足 OA
7、OC2OB ,则_15 2018 池州期末 函数 yx2x 1 与 y3sin x1的图象有 n个交点,其坐标依次x2nxiyi为 x1, y1 , x2 , y2 , , xn , yn ,则_i 1162018 集宁一中 已知圆 C 的圆心在直线 x2 y40 上,半径为5 ,若圆 C 上存在点 M ,它到定点 A 0, 4 的距离与到原点 O 的距离之比为5 ,则圆心 C 的纵坐标的取值范围是 _三、解答题:解答应写出文字说明、证明过程或演算步骤。17 2018 天门期末 在 ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cosCcos A cosB3si
8、n A cosB (1)求 cos B 的值;(2)若 ac1 ,求 b 的取值范围理科数学试卷第 3 页(共 8 页)理科数学试卷第 4 页(共 8 页)182018 河南二模 某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过30 站的地铁票价如下表:乘坐站数 x0 x 1010 x 2020 x 30票价(元)369现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过30 站甲、乙乘坐不超过 10 站的概率分别为 1, 1 ;甲、乙乘坐超过 20 站的概率分别为1,14323( 1)求甲、乙两人付费相同的概率;( 2)设甲、乙
9、两人所付费用之和为随机变量X ,求 X 的分布列和数学期望202018 盐城中学 给定椭圆 C : x2y20 ,称圆 C1 : x2y2a2b2 为椭圆22 1 a babC 的“伴随圆”已知点 A 2,1 是椭圆 G : x24 y2m 上的点( 1)若过点 P 0, 10 的直线 l 与椭圆 G 有且只有一个公共点, 求 l 被椭圆 G 的伴随圆 G1所截得的弦长:( 2) B ,C 是椭圆 G 上的两点,设 k1 ,k2 是直线 AB , AC 的斜率,且满足 4k1 k21,试问:直线 BC 是否过定点,如果过定点, 求出定点坐标, 如果不过定点, 试说明理由192018 三门峡期末
10、 如图,在三棱锥 P ABCD 中,平面 ABC平面 APC ,AB BC AP PC2, ABC 90 ( 1)求直线 PA 与平面 PBC 所成角的正弦值;( 2)若动点 M 在底面 ABC 边界及内部,二面角 MPA C 的余弦值为 3 11 ,求 BM11的最小值理科数学试卷第 5 页(共 8 页)理科数学试卷第 6 页(共 8 页)212018 烟台期末 已知函数 fxaln xx 1 a a R x( 1)求函数 fx的单调区间;( 2)若存在 x1,使 f x x1x 成立,求整数 a的最小值x请考生在22 、 23 题中任选一题作答,如果多做,则按所做的第一题计分。22 201
11、8 深圳中学 选修 44:坐标系与参数方程 在平面直角坐标系 xOy 中,已知曲线 C1 : xy 1与曲线 C2x2 2cos:(为参数,y2sin0,2 )以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系(1)写出曲线 C1 , C2 的极坐标方程;(2)在极坐标系中,已知点A 是射线 l :0 与 C1 的公共点,点 B 是 l 与 C2 的公共点,当在区间 0, 上变化时,求 OB的最大值2OA23 2018 晋中调研 选修 4-5:不等式选讲已知 a 0, b 0 , c 0 ,函数 f xca x x b (1)当 ab c 1时,求不等式 fx3的解集;(2)当 fx 的最小值
12、为 3 时,求 abc 的值,并求 111 的最小值abc理科数学试卷第 7 页(共 8 页)理科数学试卷第 8 页(共 8 页)绝密 启用前2018 年普通高等学校招生全国统一考试仿真卷理科数学(六)答案第 卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。1C2A3C4A5A6 A7B8C9A10 C11A12C第 卷本卷包括必考题和选考题两部分。第 (13)(21) 题为必考题,每个试题考生都必须作答。第 (22)(23) 题为选考题,考生根据要求作答。二、填空题:本大题共4 小题,每小题5 分。134814 315416 3,145三、
13、解答题:解答应写出文字说明、证明过程或演算步骤。17【答案】(1) cos B1 ;(2) 1b 122【解析】(1)由已知得cos ABcosAcosB 3sin AcosB 0 ,即有 sin Asin B3sin A cosB0, 3分因为 sin A0 , sin B3cosB0 又 cos B0 , tan B3 又0B1分, B, cosB,632( 2)由余弦定理,有 b2a2c22ac cos B 因为 ac1 , cos B1, 9分221,又 0a 1,于是有 11,即有 1有 b23a 1b2b 112 分244218【答案】(1) 1 ;( 2) EX51 34【解析】
14、(1)由题意知甲乘坐超过10 站且不超过 20 站的概率为 1 111 ,424乙乘坐超过10 站且不超过20站的概率为 1111 ,333设“甲、乙两人付费相同”为事件A ,则 P A1111111 ,43432331 5分所以甲、乙两人付费相同的概率是3( 2)由题意可知 X 的所有可能取值为:6, 9 ,12 ,15 ,18 6 分P X6111 ,7分4312P X911111 ,8分43436PX121111111,9分4323433PX1211111 ,10 分43234PX18111 11 分236因此 X 的分布列如下:X69121518P11111126346所以 X 的数学
15、期望 EX6191 12115118 151 12 分126346419【答案】( )6 ;(2) 10135【解析】(1)取 AC 中点 O ,ABBC,APPC ,OBOC ,OP OC 平面 ABC平面 APC ,平面 ABC平面 APCAC, OB平面 PAC ,OBOP 以 O 为坐标原点, OB 、 OC 、 OP 分别为 x 、 y 、 z 轴建立如图所示空间直角坐标系,AB BCPA2 ,OB OCOP1 ,O 0,0,0,A 0,1,0, B 1,0,0, C0,1,0 , P 0,0,1 , BC1,1,0 , PB1,0, 1 , AP 0,1,1 , 2 分设平面 PB
16、C 的法向量 mx, y, z ,由 BC m 0 , PB mxy00 得方程组z,取x0理科数学试卷答案第 1 页(共 6 页)理科数学试卷答案第 2 页(共 6 页)m 1,1,1 ,4 分os6分 cAP, m53直线 PA 与平面 PBC 所成角的正弦值为6 6分3( 2)由题意平面 PAC 的法向量 n1,0,0,设平面 PAM 的法向量为 kx0 , y0 , z0, Mm, n,0 , AP0,1,1 , AMm,n1,0 , AP k0 , AM k0 ,y0z00,取 kn1,9 分mx0n1 y0m, 1,103 112 cosn, k19 , n13m 或 n13m (
17、舍去)11 nm B 点到 AM 的最小值为垂直距离 d10 12 分520【答案】(1) 25 ;( 2)过原点【解析】(1)因为点 A 2,1是椭圆 G : x24 y 2m 上的点222m,mx2y 21, 2 分4 18即椭圆 G :28a28, b22 ,伴随圆22G1 : x y 10 ,当直线 l的斜率不存在时:显然不满足l 与椭圆 G 有且只有一个公共点, 3 分当直接 l的斜率存在时:将直线 l : ykx10 与椭圆 G : x24 y28 联立,得 14k 2 x28 10 kx320 ,由直线 l 与椭圆 G 有且只有一个公共点得2414k 2320 ,8 10k解得
18、k1,由对称性取直线 l : yx10 即 l : xy100 ,圆心到直线 l 的距离为 d00105 ,11直线 l 被椭圆 G 的伴随圆 G1 所截得的弦长2105 25 ,6分(2)设直线 AB , AC 的方程分别为 y 1k1x2 , y 1k2x2,设点 B x1, y1, C x2 , y2,联立 G : x24 y28 得1 4k12 x216k128k1x 16k1216 k140,则2x116k1216k14得 x18k12 8k12 同理x28k228k22,8分14k214k214k2112yk1 x12 14k 24k 1,9分斜率 kOB111xx8k28k211
19、11同理 k4k224k21 ,因为4k1k21, 分OC8k228k22102141414k14k114k4k2所以 kOC11kOB ,12128k18k128824k14k1B , O , C 三点共线,即直线 BC 过定点 O0,0 12 分21【答案】(1)答案见解析;(2)5【解析】(1)由题意可知, x 0, fx1a1x2x a , 1 分xx2x2方程 x2xa0 对应的14a ,当14a0 ,即 a1 时,当 x0,时, fx0 ,4 fx在 0,上单调递减; 2分当 0a1 时,方程x2xa0的两根为 11 4a ,42且0114a114a ,22理科数学试卷答案第 3
20、页(共 6 页)理科数学试卷答案第 4 页(共 6 页)此时, fx 在 114a,11 4a 上 fx0 ,函数 f x 单调递增,22114a,114a上 fx0 ,函数 fx 单调递减; 分在 0,22,4当 a0 时, 1 1 4a0 , 11 4a0 ,22此时当 x0, 114a, fx0, fx单调递增,2当 x114a ,时, fx0 , fx单调递减;2综上:当 a0 时, x0,114a , fx 单调递增,2当 x114a ,时, fx单调递减;2当 0a1 时, f x在 114a ,114a 上单调递增,422在 0,114a,114a ,上单调递减;22当 a1 时,fx在0,上单调递减; 分46( 2)原式等价于 x1 ax ln x2x 1,即存在 x1 ,使 ax ln x2x 1 成立x1设 gxx ln x2x1 , x1,则 g xxln x22 ,7 分x1x 1设 h x x ln x 2 ,则 hx11x10 , h x 在 1,上单调递增xx又 h3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国内绿色施工政策解读与落实
- JAVA社交媒体应用开发中的编程技巧试题及答案
- 国家开放大学2025年春《形势与政策》形考任务1-5和大作业参考答案
- 城市生活污水处理工程投标施工组织设计
- 内蒙古鄂尔多斯市2022年八年级《语文》上学期期末试题与答案
- JAVA与IoT设备互联的编程考察试题及答案
- 地下管网工程可行性研究报告
- 城市公共交通运营改革实施方案
- 经济法基础考前必做题目及答案
- 物联网应用-卡口式视频监控服务平台技术方案Ver210126
- 六年级语文下册第一单元复习 课件
- 电梯维保方案与计划书
- 巡察中期调研指导方案
- 福建省泉州市部分中学2022-2023学年高二下期末联考数学试题(学生版+解析)
- 七下历史常考139个问题
- 日本语句型辞典
- 《道家文化与养生》课件
- 《测绘管理法律与法规》课件-测绘成果管理
- 事业部机构设置
- 高速铁路站场围墙施工方案
- 2024版国开电大专科《现代教育思想》在线形考(形考任务一至二)+终结性考试试题
评论
0/150
提交评论