液压方面外文翻译_第1页
液压方面外文翻译_第2页
液压方面外文翻译_第3页
液压方面外文翻译_第4页
液压方面外文翻译_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、外文原文:water-based hydraulic systemswater-based hydraulic systems traditionally have been used in hot-metal areas of steel mills. the obvious advantage of water systems in these industries is their fire resistance. water-based hydraulic systems also have obvious cost advantages over oil-based fluid. f

2、irst, non-toxic, biodegradable synthetic additives for water cost $5 to $6 per gallon. one gallon of concentrate can make 20 gallons of a 5% solution, so the cost of water-based hydraulic fluid actually can be less than 30 cents per gallon.considering the costs associated with preventing and cleanin

3、g up environmental contamination, water-based hydraulic systems hold the potential for tremendous cost savings at the plant level. oil that has leaked already becomes a very important problem. it must be collected, properly contained. water containing synthetic additives, however, can by dumped into

4、 plant effluent systems.cost savings at the plant level don#39 stop at the lower cost of the fluid and its disposal. because water-based hydraulic fluid consists of 10 parts water and one part synthetic additive, 5 gallons of additive mixes with water to make 100 gallons of water-based fluid. a 50ga

5、llon container is certainly easier to handle than two 55-gallon drums, so warehousing is simpler, cleaner, and less cluttered. transportation costs also are lower.other potential plant-wide savings include improved safety for workers because the water-based fluid is non-toxic as well as non-flammabl

6、e. these attributes can reduce plant insurance rates. spills cost less to clean up because granular absorbents or absorbent socks are unnecessary. water is hot againthe oil embargo in the 1970s sparked interest in water-based fluids as a less-costly alternative to oils. even the most expensive water

7、 additives became attractive when designers learned that one gallon of concentrate would make 20 gallons of fluid.as oil prices gradually dropped, so did interest in water-based hydraulics. in retrospect, interest in water-based fluids centered on their cost saving potential. most designers lost int

8、erest when they discovered that they could not just change the fluid in their systems from oil to water without making other substantial changes. they then become reluctant to accept other disadvantages read substantial changes of switching over to water-based hydraulics.what were viewed as disadvan

9、tages were really different rules that apply to water-based hydraulic systems? designers probably resisted learning more about water-based hydraulics because they were intimated by all the work required to lean about how to design a new system or retrofit an older system. by closing their minds to t

10、his different technology, they missed the many other advantages of water-based fluid beyond initial cost. now that environmental concerns have added disposal costs to the price of hydraulic fluids, water-based hydraulics has again become a hot topic.fighting freezewater-based hydraulic systems do, o

11、f course, have limits to their applications. one limitation is the potential of freezing. this possibility is probably the most significant blockade to more widespread application of water-based systems, especially in the mobile equipment industry. long wall mining is by far the largest sector of mo

12、bile equipment that has been able to take advantage of water-based systems. temperatures underground do not approach the freezing point of water, and fire resistance is essential. mobile and even marine equipment used in temperate climates could cash in one the advantages of water based systems, but

13、 there is no guarantee that such equipment always will be used in above-freezing temperatures.nevertheless, adding an anti-freeze to a water-based fluid can depress its freezing temperature to well below 32f. ethylene glycol used in automotive anti-freeze is toxic and is not biodegradable, so its us

14、e for anti-freeze in water-based hydraulic fluid would defeat the environmental advantage water-based fluid has.there is an alternative. propylene glycol is not toxic and is biodegradable. it costs more than ethylene glycol and is not quite as effective antifreeze, so it must be used in slightly hig

15、her concentrations. two more techniques to reduce freezing potential are to keep fluid circulating continuously and use hose where practical.sealing the systemtwo more perceived problems with water hydraulic systems are bacterial infestation and difficulty in maintain proper concentrations. sealing

16、the system from atmosphere can hold bacterial growth in check. addition of an anti-bacterial agent to the fluid can have a lasting effect on preventing bacterial buildup if air is excluded from the system.a sealed reservoir eliminates another problem suffered by many hydraulic systems: water ingress

17、ion. this addresses another misconception about water-based systems: water-based systems not sealed from the atmosphere must be closely monitored to ensure that the additive concentration stays within tolerance. that is because water evaporates from the reservoir more readily than the additive does.

18、 consequently, water evaporation causes the additive concentration to increase. when new fluid is added to a system, samples of the existing fluid must be taken to determine the concentration of additive in solution. these results then reveal the ratio of additive to fluid that must be added so that

19、 fluid concentration is correct.with a system that seals fluid from the atmosphere, the evaporation problem is virtually eliminated. fluid that escapes by leakage is a solution containing water and additive. therefore, the quantity of fluid in the system changes, but concentration does not. system f

20、luid is replenished simply by adding a pre-mixed solution of water and additive to the reservoir.special considerationswater-based hydraulic systems can be more prone to pump cavitation if they are not properly designed. generous porting and other passageways should be provided to keep fluid velocit

21、ies below 20 ft. /sec preferably, below 15 ft./sec in pressure lines. velocity in suction lines, in general, should not exceed 2-3 ft. /sec. velocities in return lines should be held below 5-10ft/sec. higher return velocities can promote foaming when fluid re-enters the reservoir. components should

22、also be carefully sized because rapid changes in fluid pressure and velocity can cause dissolved air to precipitate from solution and cause damage similar to that produced by capitations.an important consideration for water-based systems is that major components should be designed specifically for u

23、se with water fluid, rather than modified from versions originally intended for oil service. tubing, hose, and fittings usually can be identical to those for oil systems. pumps, valves, and actuators for water service, however, exhibit some significant differences from components for oil systems. pu

24、mp gears, for example, should be made of super-hard alloys to resist wear. a pump#39 gear face should be wider than that of an oil pump because water #39 low viscosities requires a larger area to form an adequate lubricant film. cylinders used in water systems should have bronze-clad pistons to mini

25、mize wear between pistons and cylinder walls. spring- or o-ring-energized seals should be used to minimize leakage across the piston.valves for watervalves for water-based fluid usually are packed with seals separating metal parts to prevent metal-to-metal contact. this is because water even with lu

26、bricant additives does not provide the full-film lubrication of oil. metal surfaces in relative motion in valves for water-based fluid are separated by bearing-type materials.valves for water service also are slightly larger than those for oil. this may be another reason why water-based systems have

27、 not gained wide acceptance. originally, the larger size of components for water-based fluid created a handicap when designing systems, and more costly construction inflated prices of valves for water-based fluid to three times or more that of valves for oil. now, however, valve sizes are comparable

28、 to those for oil. many valves are available with standard nfpa footprints. the price differential has also become less. components for water-based fluid still may cost perhaps 3% more than those for oil systems, but this may be a bargain when you consider the cost-saving potential of water-based sy

29、stems.fluid leakageleakage continues to be a nagging problem in many hydraulic systems. new seal materials and designs, and o-ring face-seal fittings are powerful weapons in the battle against leakage. but the battle is far from over because of misapplication, improper installation, or simple lack o

30、f understanding. although there#39; s no excuse for leakage in most systems, it still occurs. assuming that leakage will not be eliminated in the near future, water-based fluid can dramatically reduce the costs associated with leakage.internal leakage can be just as wasteful. this leakage can carbur

31、ize the oil by generating heat. internal leakage typically is routed back to tank, so this technique transforms mechanical energy into heat instead of useful work. using a stainless steel spool with ptfe seals in a valve for water-based fluid eliminates the need for clearance between moving componen

32、ts. because there is no clearance, there is no internal leakage.but beyond the obvious and intangible costs of fluid leakage, disposing of the fluid that has leaked from a system becomes a concern. allowing hydraulic oil to enter plant effluent systems becomes an expensive proposition when removal a

33、nd disposal costs are considered. realizing that cleanup and disposal costs will only go up, and that the price of oil is unstable suggests that water-based hydraulics can be an economical solution to environmental problems.中文翻译:水基液压系统传统上水基液压系统已经应用在钢铁厂炼铁领域。这些产业中水基液压系统的明显的优点是它们的耐火性。而且水基液压系统在费用上也优于油基的

34、液压系统。首先,无毒的、可被生物分解的综合性添加剂每加仑花费5到6美元。一加仑集中可生成20加仑的5%溶液,因此实际上水基液压流体的费用可以比油基的每加仑少30分。在工厂的水平下,考虑到相关费用、防止和清理环境的污染,水基液压系统拥有节省巨大成本的潜力。液压油的泄漏已经成为一个非常重要的问题。它必须被收集、妥善控制。不过,含有合成添加剂的水,可以倾倒入工厂的污水系统。在工厂水平下,节省成本不停留在流体的较低成本及其处理上。因为水基液压液由十部分水和一部份合成添加剂,5加仑添加剂与水的混合物构成100加仑水基流体。50加仑的容器当然比两个55加仑的桶更容易处理,因此储藏更简单、更清洁、更不凌乱,

35、运输成本也较低。其他工厂范围下潜在的节约是为工人改善安全,因为水基液是不含毒性,并且非易燃。这些特点可以减少工厂的保险费率。泄漏的成本比清理低,因为不再需要颗粒吸收剂或吸附棉条。水基流体再次变成“热门话题”在20世纪70年代石油禁运引发了较低成本的水基液压流体替代高昂的液压油的兴趣。当设计师们获悉,一加仑聚合物可以制造出二十加仑的流体时,即使是最昂贵的水添加剂都更有吸引力。由于石油价格逐渐的回落,因此人们对水基液压也没有那么大的兴趣了。回想起来,对水基流体的兴趣集中在其节省成本的潜力上。当设计师发现他们不能在他们的系统中改变流体从液压油到水的状况并且也没有其他重大的改变时,他们就失去了兴趣。然

36、后,他们不情愿的接受其他的“缺点”了解到很大的变化又切换到水基液压。适用于水基液压系统的不同的规则被认为是缺点。设计师可能不愿意学习更多关于水基液压,因为他们被暗示,所有的工作需要依靠如何设计一个新的系统或改造旧系统的知识。因为他们结束了对这另外技术的思维,他们错过了除水基流体初始成本以外的许多其他的优点。现在,环境问题,增加了液压油处理成本的价格,水基液压便再次成为热门话题。抵抗凝固当然,水基液压系统确实在应用上有它的局限性。一个限制就是潜在的凝固。这个可能性可能是更广泛地应用水基系统,特别是在移动设备业最重要的阻碍。长壁开采法是迄今为止最大的能够充分利用水基系统的移动设备部门。地下的温度不

37、接近水的凝点和耐火性是必不可少的条件。用于温带气候海上设备和移动设备获利于水基系统的优点,但不能保证这些设备将始终用在上述凝固温度。不过,给水基流体加入防冻液可以使其凝固温度远低于32华氏度。用在汽车上的防冻液-乙二醇-是有毒的,是不能生物降解的,因此它在水基液压中添加防冻液将击败水基液压流体在环境上的优势。有一个替代的方法。丙二醇是没有毒性,而且是可生物降解的。它比乙二醇花费更多,并且是不太有效的一种防冻液,因此它必须使用较高浓度的溶液。减少凝固潜力的另外两个技术是要保持流体的不断循环和在实际中使用胶管。系统的密封水基液压系统的两个个容易被察觉的问题是细菌的大批出没,并且很难保持适当的浓度。大气下的密封系统在控制中可容纳细菌成长。此外,如果从系统排除空气,一个抗菌剂的流体能对防止细菌的增长有一个持久的影响。一个被密封的水箱消除许多液压系统遭受的另一个问题:水的进入。这说明关于水基系统的另一个误解:没有从大气中密封的水基系统,必须密切监察,以确保该添加剂浓度保持在在允许的范围之内。这是因为水比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论