版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、空间角1、异面直线所成角的求法一是几何法,二是向量法。异面直线所成的角的范围:几何法求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解。基本思路是选择合适的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点。常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。例1在正方体中,E是AB的中点, (1)求BA/与CC/夹角的度数.(2)求BA/与CB/夹角的度数
2、(3)求A/E与CB/夹角的余弦值 例2:长方体ABCDA1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的余弦值。直接平移:常见的利用其中一个直线a和另一个直线b上的一个已知点,构成一个平面,在此平面内做直线a的平行线。解法一:如图,过B1点作BEBC1交CB的延长线于E点。则DB1E就是异面直线DB1与BC1所成角,连结DE交AB于M,DE=2DM=3,DB1E= 解法二:如图,在平面D1DBB1中过B点作BEDB1交D1B1的延长线于E,则C1BE就是异面直线DB1与BC1所成的角,连结C1E,在B1C1E中,C1B1E=135,C1E=3,C1BE=课堂思
3、考:1.如图,PA矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的余切值为。ABCD2.在长方体ABCD- A1B1C1D1中,若棱B B1=BC=1,AB=,求D B和AC所成角的余弦值.例3题图例3 如图所示,长方体A1B1C1D1-ABCD中,ABA1=45,A1AD1=60,求异面直线A1B与AD1所成的角的度数.课堂练习如图空间四边形ABCD中,四条棱AB,BC,CD,DA及对角线AC,BD均相等,E为AD的中点,F为BC中,(1) 求直线AB和CE 所成的角的余弦值。(2) 求直线AF和CE 所成的角的余弦值。二、线面角 1、线面角的范围:0,2、线面角的求法1)
4、解决该类问题的关键是找出斜线在平面上的射影,然后将直线与平面所成的角转化为直线与直线所成的角在某一直角三角形内求解2)线面角的求法还可以不用做出平面角可求出线上某点到平面的距离d,利用sin可求.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。例1 ( 如图1 )四面体ABCS中,SA,SB,SC 两两垂直,SBA=45, SBC=60, M 为 AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。解:(1) SCSB,SCSA
5、, 图1SC平面SAB 故 SB是斜线BC 在平面SAB上的射影, SBC是直线BC与平面SAB所成的角为60。(2) 连结SM,CM,则SMAB,又SCAB,AB平面SCM,面ABC面SCM过S作SHCM于H, 则SH平面ABCCH即为 SC 在面ABC内的射影。 SCH 为SC与平面ABC所成的角。 sin SCH=SHSCSC与平面ABC所成的角的正弦值为77(“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)2. 利用公式sin=h其中是斜线与平面
6、所成的角, h是 垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。例2 ( 如图2) 长方体ABCD-A1B1C1D1 , AB=3 ,BC=2, A1A= 4 ,求AB与面 AB1C1D 所成的角。解:设点 B 到AB1C1D的距离为h,VBAB1C1=VABB1C113 SAB1C1h= 13 SBB1C1AB,易得h=125 设AB 与 面 A B1C1D 所成的角为,则sin=hAB=45 图2AB与面AB1C1D 所成的角为arcsin 45 例3、如图甲,在平面四边形ABCD中A45,C90,ADC10
7、5,ABBD,再将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点(1)求证:DC平面ABC;(2)求BF与平面ABC所成角的正弦值证明:在图甲中,ABBD且A45,ADB45.ABD90,即ABBD.在图乙中,平面ABD平面BDC,且平面ABD平面BDCBD,AB平面BDC.ABCD.又DCB90,DCBC,且ABBCB.DC平面ABC.2)E、F分别为AC、AD的中点,EFCD.又由(1)知DC平面ABC,EF平面ABC,垂足为点E.FBE是BF与平面ABC所成的角在图甲中,ADC105,BDC60,DBC30.设CDa,则BD2a,BCa,B
8、FBDa,EFCDa.在RtFEB中,sinFBE.即BF与平面ABC所成角的正弦值为.练习3在三棱柱ABCA1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是() 答案:CA30 B45C60 D90练习4(2011全国卷)如图,四棱锥SABCD中,ABCD,BCCD,侧面SAB为等边三角形,ABBC2,CDSD1.(1)证明:SD平面SAB;(2)求AB与平面SBC所成的角的正弦值解:(1)证明:取AB的中点E,连接DE,则四边形BCDE为矩形,DECB2.连接SE,则SEAB,SE.又SD1,故ED2SE2SD2,所以DSE为直
9、角,即SDSE.由ABDE,ABSE,DESEE,得AB平面SDE,所以ABSD.SD与两条相交直线AB、SE都垂直,所以SD平面SAB.(2)由AB平面SDE知,平面ABCD平面SDE.作SFDE,垂足为F,则SF平面ABCD,SF.作FGBC,垂足为G,则FGDC1.连接SG,则SGBC.又BCFG,SGFGG,故BC平面SFG,平面SBC平面SFG.作FHSG,H为垂足,则FH平面SBC.FH,即F到平面SBC的距离为.由于EDBC,所以ED平面SBC,E到平面SBC的距离d也为.设AB与平面SBC所成的角为,则sin课后作业、如图,在四棱锥PABCD中,PA底面ABCD,ABAD,AC
10、CD,ABC60,PAABBC,E是PC的中点(1)求PB和平面PAD所成的角的大小;(2)证明AE平面PCD;(3)求二面角APDC的正弦值思维启迪:(1)先找出PB和平面PAD所成的角,线面角的定义要能灵活运用;(2)可以利用线面垂直根据二面角的定义作角(1)解在四棱锥PABCD中,因PA底面ABCD,AB平面ABCD,故PAAB.又ABAD,PAADA,从而AB平面PAD,故PB在平面PAD内的射影为PA,从而APB为PB和平面PAD所成的角在RtPAB中,ABPA,故APB45.所以PB和平面PAD所成的角的大小为45.(2)证明在四棱锥PABCD中,因PA底面ABCD,CD平面ABC
11、D,故CDPA.由条件CDAC,PAACA,CD平面PAC.又AE平面PAC,AECD.由PAABBC,ABC60,可得ACPA.E是PC的中点,AEPC.又PCCDC,综上得AE平面PCD.(3)解过点E作EMPD,垂足为M,连接AM,如图所示由(2)知,AE平面PCD,AM在平面PCD内的射影是EM,则AMPD.因此AME是二面角APDC的平面角由已知,可得CAD30.设ACa,可得PAa,ADa,PDa,AEa.在RtADP中,AMPD,AMPDPAAD,则AMa.在RtAEM中,sinAME.所以二面角APDC的正弦值为.探究提高(1)求直线与平面所成的角的一般步骤:找直线与平面所成的角,即通过找直线在平面上的射影来完成;计算,要把直线与平面所成的角转化到一个三角形中求解(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度玩具设计与制造合同
- 日用化学产品的市场市场差异化与产品创新策略考核试卷
- 提高员工对企业安全生产培训的反馈率和满意度考核试卷
- 林木育种技术在城市环境修复中的应用考核试卷
- 2024年度危险品货物海上运输总承运合同
- 2024年度供应链管理合作共赢协议
- 建筑装饰中的功能分类与布局考核试卷
- 2024年度展览陈列现场管理合同
- 安全生产培训中的电气与火灾安全考核试卷
- 森林改培与土壤肥力改善考核试卷
- 职业危害监测制度
- 基础抹灰技术交底
- 2023年英语专业四级单选题汇总
- GB/T 451.3-2002纸和纸板厚度的测定
- GB/T 31548-2015电动自行车轮胎系列
- GB/T 21661-2020塑料购物袋
- GB/T 14480.1-2015无损检测仪器涡流检测设备第1部分:仪器性能和检验
- 《 小二黑结婚 》课件-统编版高中语文选择性必修中册
- FZ/T 21001-2019自梳外毛毛条
- CB/T 3780-1997管子吊架
- 四川省阿坝藏族羌族自治州《综合知识》事业单位国考真题
评论
0/150
提交评论