《自适应控制学习心得》.doc_第1页
《自适应控制学习心得》.doc_第2页
《自适应控制学习心得》.doc_第3页
《自适应控制学习心得》.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文章自适应控制学习心得在八周的自适应控制学习中,我了解了自适应控制的基本概念和定义,自适应控制的原理和数学模型以及发展状况。其中,老师重点给我们讲了李亚普诺夫稳定理论设计mrac系统和mit方案,波波夫超稳定理论设计mrac系统和mit方案和自校正控制系统。虽然这些理论知识掌握的不是很牢固,理解的也不够透彻,但是这为我以后的学习和实践奠定了一定的基础。自适应控制的定义。(1)不论外界发生巨大变化或系统产生不确定性,控制系统能自行调整参数或产生控制作用,使系统仍能按某一性能指标运行在最佳状态的一种控制方法。(2)采用自动方法改变或影响控制参数,以改善控制系统性能的控制。自适应控制的基本思想是

2、。在控制系统的运行过程中,系统本身不断的测量被控系统的状态、性能和参数,从而“认识”或“掌握”系统当前的运行指标并与期望的指标相比较,进而做出决策,来改变控制器的结构、参数或根据自适应规律来改变控制作用,以保证系统运行在某种意义下的最优或次优状态。按这种思想建立起来的控制系统就称为自适应控制系统。自适应控制是主动去适应这些系统或环境的变化,而其他控制方法是被动地、以不变应万变地靠系统本身设计时所考虑的稳定裕度或鲁棒性克服或降低这些变化所带来的对系统稳定性和性能指标的影响。好的自适应控制方法能在一定程度上适应被控系统的参数大范围的变化,使控制系统不仅能稳定运行,而且保持某种意义下的最优或接近最优

3、。自适应控制也是一种基于模型的方法,与基于完全模型的控制方法相比,它关于模型和扰动的先验知识比较少,自适应控制策略可以在运行过程中不断提取有关模型的信息,自动地使模型逐渐完善。李亚普诺夫稳定理论设计mrac系统和mit方案的学习中,如果要设计一个关于李雅普诺夫函数的mrac系统。首先构造出系统的李亚普诺夫函数,然后用李雅普诺夫稳定性理论的设计方法,能够成功地设计稳定的模型参考自适应系统。在这一章的学习中,理解李亚普诺夫稳定性理论和构造系统的李亚普诺夫函数是重点。超稳定性概念是波波夫于六十年代初研究非线性系统绝对稳定性时发展起来的。当时,波波夫对某种类型的非线性系统的渐近稳定性问题,提出了一个具

4、有充分条件的频率判据,对研究的这类非线性系统的稳定性提供了比较实用的方法。波波夫所研究的这类非线性系统,是由线性时不变部分与非线性无记忆元件相串联而构成的反馈系统。波波夫超稳定性理论来设计模型参考自适应系统,它可以给出一族自适应规律,并且有一整套设计理论。因此,有利于学习掌握这种自适应控制的设计方法和结合实际系统灵活选择适当的自适应控制规律。自校正控制系统又称为参数自适应系统,它源于随机调节问题,该系统有两个环路,一个环路由参数可调的调节器和被控系统所组成,称为内环,它类似于通常的反馈控制系统;另一个环路由递推参数估计器与调节器参数计算环节所组成,称为外环。自校正控制系统与其它自适应控制系统的

5、区别为其有一显性进行系统辨识和控制器参数计算(或设计)的环节这一显著特征。自校正控制的思想是将在线参数估计与调节器的设计有机的结合在一起。自适应控制常常兼有随机性、非线性和时变等特征,内部机理也相当复杂,所以分析这类系统十分困难。目前,已被广泛研究的理论课题有稳定性、收敛性和鲁棒性等,但取得的成果与人们所期望的还相差甚远。在传统的控制理论与控制工程中,当对象是线性定常、并且完全已知的时候,才能进行分析和控制器设计。无论是采用频域方法还是状态空间方法对象一定是已知的。这类方法称为基于完全模型的方法。在模型能够精确的描述实际对象时,基于完全模型的控制方法可以进行各种分析、综合,并得到可靠、精确和满

6、意的控制效果。因此,在控制工程中,要成功设计一个良好的控制系统,不论是通常的反馈控制系统或是最优控制系统,都需要掌握好被控系统的数学模型。然而,有一些实际被控系统的数学模型是很难事先通过机理建模或离线系统辨识来确知的,或者它们的数学模型的某些参数或结构是处于变化之中的。对于这些事先难以确定数学模型的系统,通过事先鉴定好控制器参数的常规控制难以应付。面对这些系统特性未知或经常处于变化之中而无法完全事先确定的情况,如何设计一个满意的控制系统,使得能主动适应这些特性未知或变化的情况,这就是自适应控制所要解决的问题。自适应控制技术在20世纪80年代即开始向产品过渡,在我国得到了较好的推广应用,取得了很大的经济效益。且理论研究也有一些开创性的成果。但总的来说推广应用还很有限,主要是由于其通用性和开放性严重不足。虽然现已能设计出安全、有效、稳定、快速且现场操作比较简单的自适应控制系统,但今后较长一段时期内,相对简单实用的反馈、反馈加前馈或其他一些成熟的控制技术仍将继续占据实际应用的主流。自适应控制理论必须有新的突破,才能在工程应用中对pid控制等传统方法取得显著的优势,结合人工智能技术,尤其是神经网络技术与模糊理论,或许是最终实现这一远景的可能途径。在近两个月的学习中,感谢范老师的精彩讲授

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论