




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.“鸽巢问题”教案教学内容:教材第68-70页例1、例2,及“做一做”。学习目标: 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。学习重点:引导学生把具体问题转化成“鸽巢问题”。学习难点:找出“鸽巢问题”解决的窍门进行反复推理。教具准备:多媒体课件。学习过程: 一、创设情境,导入新知 老师组织学生做“抢椅子”游戏(请3位同学
2、上来,摆开2条椅子),并宣布游戏规则。 其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。-出示课题鸽巢问题 “鸽巢原理”又称“抽屉原理” ,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们就来研究这一原理。 二、合作交流,探究新知 1、教学例1(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?问题:“总有”和“至少”是什么意思? 学生通过操作
3、发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 (3)探究证明。个人调整意见 方法一:用“分解法”证明。把4分解成3个数。由图可知,把4分解成3个数,有4中情况,每种分法中最多的数最小是2,也就是说每一种情况分
4、得的3个数中,至少有1个数大于或等于2的数。方法二:用“假设法”证明。43=1(支).1(支),剩下1支,放进其中1个笔筒中,使其中1个笔筒都变成2支,因此把4支笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少放进2支笔。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 (4)认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。用“抽屉问题
5、”的语言描述就是把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。(5) 归纳总结:放的铅笔数比笔筒的数量多1,就总有1个笔筒里至少放进2支铅笔。抽屉原理一:只要放的物体比抽屉的数量多1,总有一个抽屉里至少放入2个物体。同学们现在可以理解为什么“抢椅子”游戏中总有一把椅子上至少有2人了吧?考一考:5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?541(人)1(人)112(人) 2、教学例2(课件出示例题2情境图)思考问题: (一)把7本书放进3个抽屉,不管怎么放,有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢?学生通过“探究证明得出结论”的学习过程来解决问题(
6、一)。 (1)探究证明。 方法一:用数的分解法证明。把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。 方法二:用假设法证明。 把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。 (2)得出结论。 通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。(1)用假设法分析。
7、83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 (2)归纳总结: 抽屉原理二:如果物体数除以抽屉数有余数,用所得的商加1,就会发现:“总有一个抽屉里至少有商加1个物体”。 三、巩固新知,拓展应用1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?2、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么? 3、完成教材第71页练习十三的1-2题。 (学生独立思考解答
8、问题,集体交流、纠正。) 四、课堂总结 通过今天的学习你有什么收获?五、作业布置课本第71页练习十三,第2题、第3题。板书设计:鸽巢问题 方法一:用“分解法”证明。(把4分解成3个数)方法二:用“假设法”证明。 43=1(支).1(支) 1+1=2(支)教学反思: 我的印象里抽屉原理是非常难懂的。为了上好这一内容,我搜集学习了很多资料,抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。 “抢椅子”的游戏为后面用假设法证明埋下了伏笔。用笔和笔筒进行研究,学生操作起来方便,演示起来直观。再有就是受前面“抢椅子”游戏的影响,大部分学生用假设法验证;也有部分学生尝试用分解法一种情况一种情况的分。由分解法和假设法,引导学生理解“总有一个”和“至少”的含义。研究稍复杂问题时,对学生提出新的要求:不用分解法,想一种更简便的方法来验证。引导学生结合“抢椅子”的游戏,用假设法来验证。假设法的实质是用极端法做最坏的打算,也就是考虑最不利的情况。 在理解了假设法验证后,后面的推理和总结规律也就相对来说容易了些。练习设计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 难忘的一个人500字作文10篇范文
- 儿童节游乐场活动方案
- 企业与猫咖的合作协议
- 运输承包合同与运输车辆承包合同
- 品牌服装采购与分销合同
- 公交公司小队活动方案
- 快乐童话创作与故事主题(5篇)
- 公交车礼让行人活动方案
- 对失败与成功的新认识议论文15篇
- 重新签订离婚协议书
- 【编制说明】电力电缆通道用防火隔板及槽盒技术规范
- 分布式光伏经济评价规范
- 振动力学期末试卷-06.07.08期末-上海交大
- MOOC 大学物理(上)-西北工业大学 中国大学慕课答案
- 伊朗钢结构包装专项方案
- 雨污分流改造方案
- 小升初数学知识点总结(小考复习精编专项讲义)六年级数学小升初复习系列:数与式知识点梳理大全
- E+H-压力变送器培训
- 统编版高中语文必修下册《跨媒介阅读与交流》标准课件
- 重庆市地质灾害专业监测预警技术要求(试行)
- 幼儿园户外自主游戏中教师的有效介入研究-以积木游戏为案例(最终成稿)
评论
0/150
提交评论