2021年中考数学复习第3章 函数_第1页
2021年中考数学复习第3章 函数_第2页
2021年中考数学复习第3章 函数_第3页
2021年中考数学复习第3章 函数_第4页
2021年中考数学复习第3章 函数_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三章函数第一节函数及其图象(建议用时:50分钟)考点1平面直角坐标系中点的坐标特征1.2020江苏扬州在平面直角坐标系中,点P(x2+2,-3)所在的象限是( D )A.第一象限B.第二象限C.第三象限D.第四象限2.2020湖北黄冈在平面直角坐标系中,若点A(a,-b)在第三象限,则点B(-ab,b)所在的象限是( A )A.第一象限B.第二象限C.第三象限D.第四象限3.2020四川自贡在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是 ( D )A.(-1,1)B.(5,1)C.(2,4)D.(2,-2)4.2020江苏淮安在平面直角坐标系中,点(3,2)关于原点对

2、称的点的坐标是( C )A.(2,3)B.(-3,2)C.(-3,-2)D.(-2,-3)5.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过( C )A.点M B.点N C.点P D.点Q 6.在平面直角坐标系中,点P(m-3,4-2m)不可能在( A )A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.2020湖南衡阳如图,在平面直角坐标系中,点P1的坐标为(22,22),将线段OP1绕点O按顺时针方向旋转45,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45,长度伸长为OP2的2倍,得到线段OP3;如

3、此下去,得到线段OP4,OP5,OPn(n为正整数),则点P2 020的坐标是(0,-22 019).8.2020四川达州如图,点P(-2,1)与点Q(a,b)关于直线l(y=-1)对称,则a+b=-5.9.2020江苏连云港如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M,N的坐标分别为(3,9),(12,9),则顶点A的坐标为(15,3).10.已知点P(2m+4,m-1).试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P在过点A(2,-3),且与x轴平行的直线上;(4)点P到x轴,y轴的距离相等.解:(1)令2m+4=0,解得m=-2,所以

4、点P的坐标为(0,-3).(2)令m-1=0,解得m=1,所以点P的坐标为(6,0).(3)令m-1=-3,解得m=-2,所以点P的坐标为(0,-3).(4)由题意可知|2m+4|=|m-1|,即2m+4=m-1或2m+4=-(m-1),解得m=-5或m=-1,所以点P的坐标为(-6,-6)或(2,-2).考点2函数自变量的取值范围及函数值11.2020四川遂宁函数y=x+2x-1中,自变量x的取值范围是( D )A.x-2 B.x-2 C.x-2且x1D.x-2且x112.2019重庆B卷根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值

5、是( C )A.5B.10C.19D.21考点3函数图象的分析与判断13.2020贵州遵义新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( C )14.2020湖北黄冈2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销.下面表示2020

6、年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象的是( D ) 15.2020湖北武汉一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4 min内只进水不出水,从第4 min到第24 min内既进水又出水,从第24 min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是( C )A.32B.34C.36D.3816.2020江苏连云港快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系,小欣

7、同学结合图象得出如下结论:快车途中停留了0.5 h;快车速度比慢车速度多20 km/h;图中a=340;快车先到达目的地.其中正确的是( B )A.B.C.D.17.2020安徽如图,ABC和DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为( A )18.2020重庆A卷A,B两地相距240 km,甲货车从A地以40 km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,

8、到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CDEF所示,其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是(4,160).第二节一次函数的图象与性质基础分点练(建议用时:35分钟)考点1一次函数的图象与性质1.2020浙江杭州在平面直角坐标系中,已知函数y=ax+a(a0)的图象经过点P(1,2),则该函数的图象可能是( A )2.2020广东广州一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则( B )A.y1y2y3B.y3y2y1C.y2y1y3D.y3y1y23.2020安

9、徽已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是( B )A.(-1,2)B.(1,-2)C.(2,3)D.(3,4)4.2020迁安二模一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数解析式为y2=k2x+b2.下列说法中错误的是( B )A.k1=k2B.b1b2D.当x=5时,y1y25.2020唐山路北区二模如图,平面直角坐标系中,ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线y=12x+b与ABC有交点时,b的取值范围是( A )A.-12b1B.-1b1C.-12b12D.-

10、1b126.2020广东广州直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是( D )A.0个B.1个C.2个D.1个或2个7.2020石家庄一模如图,直线l1:y=2x+2分别交x轴、y轴于点A,C,直线l2:y=-12x+2分别交x轴、y轴于点B,C,点P(m,1)是ABC内部(包括边界)的一点,则m可能是( C )A.3B.-32C.0m2D.-1m48.2019石家庄裕华区一模对于函数y=-2x+5,有下列表述:图象一定经过(2,-1);图象经过第一、二、四象限;与坐标轴围成的三角形面积为12.5;x每增加1,y的值减少2;该图象向左平移1个单位长度后的函

11、数解析式是y=-2x+4.其中正确的是( C )A. B. C. D. 考点2一次函数解析式的确定(含平移)9.2021预测将直线y=ax+b先向下平移1个单位长度,再向左平移2个单位长度,得到直线y=2x,则a+b=( A )A.-1 B.0C.1D.310.2020江苏南京将一次函数y=-2x+4的图象绕原点O逆时针旋转90,所得到的图象对应的函数表达式是y=12x+2.11.2019江西如图,在平面直角坐标系中,点A,B的坐标分别为(-32,0),(32,1),连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.解:(1)如图,过点B作BDx

12、轴于点D,则ADB=90.A(-32,0),B(32,1),DA=3,DB=1,AB=2,sinBAD=12,BAD=30.ABC为等边三角形,AC=AB=2,BAC=60,CAD=90,故点C的坐标为(-32,2).(2)设线段BC所在直线的解析式为y=kx+b.由B(32,1),C(-32,2),得32k+b=1,-32k+b=2,解得k=-33,b=32,故线段BC所在直线的解析式为y=-33x+32.考点3一次函数与方程(组)、不等式的关系12.2020湖南湘潭如图,直线y=kx+b(k0)经过点P(1,1),当kx+bx时,x的取值范围为( A )A.x1B.x1C.x113.202

13、0邯郸丛台区模拟如图,一次函数y=kx+b与y=x+2的图象相交于点P (m, 4),则关于x, y的二元一次方程组y=kx+b,y=x+2的解是( D )A.x=3,y=4B.x=1,y=4C.x=2.4,y=4D.x=2,y=414.2019唐山丰南区模拟一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:k0;关于x的方程kx+b=x+a的解为x=3;x3时,y1y2.正确的个数是( C )A.1B.2 C.3 D.4 综合提升练(建议用时:35分钟)1.2020沈阳一次函数y=kx+b(k0)的图象经过点A(-3,0),点B(0,2),那么该图象不经过的象限是( D )A.

14、第一象限B.第二象限C.第三象限D.第四象限2.2020陕西在平面直角坐标系中,O为坐标原点,若直线y=x+3分别与x轴、直线y=-2x交于点A,B,则AOB的面积为( B )A.2B.3C.4D.63.2020石家庄42中模拟如图,在平面直角坐标系中,点P(-0.5,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是( B )A.2a4B.1a3C.1a2 D.0a0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是( D )A.12t2 B.12t1C.1t2D.12t2且t15.2020贵州遵义如图,直线y=kx+b(k,b是常数且k0)与直线y=2

15、交于点A(4,2),则关于x的不等式kx+b2的解集为x1时,对于x的每一个值,函数y=mx(m0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.解:(1)一次函数y=kx+b(k0)的图象是由函数y=x的图象平移得到的,k=1.将点(1,2)代入y=x+b,得2=1+b,解得b=1,一次函数的解析式为y=x+1.(2)m2.解法提示:当函数y=mx与y=x+1的图象交点的横坐标为1时,该交点的纵坐标为2,此时m=2.分析可知,随着m的增大,两函数图象的交点逐渐向左移动,故m2.9.2020山东滨州如图,在平面直角坐标系中,直线y=-12x-1与直线y=-2x+2相交于点P,并分别与

16、x轴相交于点A,B.(1)求交点P的坐标;(2)求PAB的面积;(3)请把图象中直线y=-2x+2在直线y=-12x-1上方的部分描黑加粗,并写出此时自变量x的取值范围.解:(1)根据题意,交点P的横、纵坐标是方程组y=-12x-1,y=-2x+2的解,解这个方程组,得x=2,y=-2,交点P的坐标为(2,-2).(2)易知直线y=-12x-1与x轴的交点A的坐标为(-2,0),直线y=-2x+2与x轴的交点B的坐标为(1,0),PAB的面积为121-(-2)2=1232=3.(3)在图象中把直线y=-2x+2在直线y=-12x-1上方的部分描黑加粗,图示如下:此时自变量x的取值范围为x0,所

17、以w随着m的增大而增大.又因为0m20,所以当m=20时,该公司一个月获得的总利润最大,最大值为26万元.故该公司一个月销售这两种特产所能获得的最大总利润为26万元.2.2020石家庄新华区质量检测已知甲、乙两辆汽车分别从A,B两地同时匀速出发,甲车开往B地,乙车开往A地.设甲、乙两车距A地的路程(单位:km)分别为s甲,s乙,甲车的行驶时间为t(单位:h).若甲车的行驶速度为100 km/h,s乙与t之间的对应关系如下表:t/h25s乙/km560320(1)分别求出s甲,s乙与t之间的函数关系式.(不写t的取值范围)(2)当t为何值时,甲、乙两车相遇?(3)当两车距离小于180 km时(相

18、遇时除外),求t的取值范围.解:(1)甲车的行驶速度为100 km/h,s甲与t之间的函数关系式为s甲=100t. 乙车匀速行驶,设s乙与t之间的函数关系式为s乙=kt+b,将(2,560),(5,320)分别代入,得560=2k+b,320=5k+b,解得k=-80,b=720,s乙与t之间的函数关系式为s乙=-80t+720.(2)当两车相遇时,s甲=s乙,即100t =-80t+720,解得t=4,当t为4时,甲、乙两车相遇.(3)在两车相遇之前,即当ts甲,令s乙-s甲180, 即-80t+720-100t3,3t4时,s甲s乙,令s甲-s乙180,即100t-(-80t+720)18

19、0,解得t5,4t5.综上可知,当两车距离小于180 km时(相遇时除外),3t4或4t5.3.2020湖北荆州为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表:(单位:元/吨)生产厂目的地AB甲2025乙1524(1)求甲、乙两厂分别生产了这批防疫物资多少吨.(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数关系式,并设计使总运费最少的调运方案.(3)当每吨运费降低m元(0m15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5 200

20、元,求m的最小值.解:(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,则a+b=500,2a-b=100,解得a=200,b=300.答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨.(2)如表,甲、乙两厂调往A,B两地的数量如下:生产厂目的地A/吨B/吨合计/吨甲240-xx-40200乙x300-x300合计/吨240260500y=20(240-x)+25(x-40)+15x+24(300-x)=-4x+11 000.x0,240-x0,300-x0,x-400,40x240.当x=240时运费最小,甲厂200吨全部运往B地;乙厂运往A地240吨,运往B地60吨时总运费最少.(

21、3)当每吨运费降低m元时,y=-4x+11 000-500m.当x=240时, y最小=-4240+11 000-500m=10 040-500m,10 040-500m5 200,m9.68.又m为整数,m的最小值为10.考点2一次函数的实际应用 图象型4.2020浙江宁波A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通

22、话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米.解:(1)设函数表达式为y=kx+b,将(1.6,0),(2.6,80)分别代入y=kx+b,得0=1.6k+b,80=2.6k+b,解得k=80,b=-128,y关于x的函数表达式为y=80x-128(1.6x50时,y与x之间的函数关系式.(2)若经销商计划一次性购进甲、乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲、乙两种水果

23、的购进量,才能使经销商付款总金额w(元)最少?(3)若甲、乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲、乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1 650元,求a的最小值.解:(1)当0x50时,y=30x;当x50时,y=24x+300.解法提示:当0x50时,设y=nx.将(50,1 500)代入,得1 500=50n,解得n=30,y=30x(0x50).当x50时,设y=kx+b.将(50,1 500),(70,1 980)分别代入,得50k+b=1500,70k+b=1980,解得k=24,b=300,y=24x+

24、300(x50).(2)设经销商购进甲种水果m千克,则购进乙种水果(100-m)千克.当40m50时,w=30m+25(100-m)=5m+2 500.50,w随m的增大而增大,当m=40时,w取最小值,w最小值=540+2 500=2 700.当50m60时,w=24m+300+25(100-m)=-m+2 800.-10,w随m的增大而减小,当m=60时,w取最小值,w最小值=-60+2 800=2 740.综上可知,当购进甲种水果40千克、乙种水果60千克时,经销商付款总金额最少.(3)由(2)可知甲种水果的购进量为25a千克,乙种水果的购进量为35a千克.当025a50,即0125,这

25、种情况不合题意,舍去.当25a50,即a125时,根据题意,得25a40-(2425a+300)+35a(36-25)1 650,解得a150.150125,这种情况符合题意,即a的最小值为150.第四节反比例函数及其应用基础分点练(建议用时:80分钟)考点1反比例函数的图象与性质1.2020上海已知反比例函数的图象经过点(2,-4),那么这个反比例函数的解析式是( D )A.y=2xB.y=-2xC.y=8xD.y=-8x2.2020天津若点A(x1,-5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,则x1,x2,x3的大小关系是( C )A.x1x2x3B.x2x3x

26、1C.x1x3x2D.x3x10时,y随x的增大而增大D.当x0时,y随x的增大而减小4.2020承德二模函数y=-kx(k0,x0)的图象如图所示,若z=1y,则z关于x的函数图象可能是( C )5.2020湖北武汉若点A(a-1,y1),B(a+1,y2)在反比例函数y=kx(ky2,则a的取值范围是( B )A.a-1B.-1a1D.a16.2020陕西在平面直角坐标系中,点A(-2,1),B(3,2),C(-6,m)分别在三个不同的象限.若反比例函数y=kx(k0)的图象经过其中两点,则m的值为-1.7.2020广西桂林反比例函数y=kx(x0;当x1,kx1.解:解不等式,得x1.根

27、据函数y=kx的图象,得不等式的解集为0x2.把不等式和的解集在下面的数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集为0x1.解:(1)因为点(-2,-1)在反比例函数y=kx的图象上,所以-1=k-2,解得k=2.(2)x10x2不等式和的解集在数轴上表示如下图所示.0x0).(1)当2x3时,函数y1的最大值是a,函数y2的最小值是a-4,求a和k的值.(2)设m0,且m-1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q.”你认为圆圆的说法正确吗?为什么?解:(1)因为k0,所以y1在2x3时随x的增大而减小,所以当x=2时,y1=a,即

28、k=2a.因为-k0,所以y2在2x3时随x的增大而增大,所以当x=2时,y2=a-4,即-k=2a-8.联立,解得a=2,k=4.(2)圆圆的说法不正确.取m=m0,满足-1m00,所以当x=m0时,y1=km00,即p0,即q0.此时p00,k0)的图象上.若正方形ADEF的面积为4,且BF=2AF,则k的值为( C )A.12B.8C.6D.311.2020湖南郴州如图,在平面直角坐标系中,点A是双曲线y1=k1x(x0)上任意一点,连接AO,过点O作AO的垂线与双曲线y2=k2x(x0)图象上的一点,AB垂直于x轴,垂足为点B,OAB的面积为6.若点P(a,7)也在此函数的图象上,则a

29、=127.13.2020辽宁抚顺如图,在ABC中,AB=AC,点A在反比例函数y=kx(k0,x0)的图象上,点B,C在x轴上,OC=15OB,延长AC交y轴于点D,连接BD,若BCD的面积等于1,则k的值为3.考点3反比例函数的实际应用14.2019浙江温州验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为( A )近视眼镜的度数y/度 200 250 4005001 000镜片焦距x/米 0.50 0.40 0.250.200.10A.y=100xB.y=x100C.y=400xD.y=x40015.2020山东临沂已知蓄电

30、池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系.当R=4 时,I=9 A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/I/A(3)如果以此蓄电池为电源的用电器的限制电流不能超过10 A,那么用电器可变电阻应控制在什么范围内?解:(1)设I=kR,将R=4,I=9代入I=kR,得k=36,故I关于R的函数解析式为I=36R.(2)完成表格如下(答案不唯一):R/345678910I/A12971565174124335根据表格中的对应点描点、连线,可得函数图象如图所示:(3)当I10时,36R10,所以R3

31、.6,故用电器可变电阻的范围是R3.6 .考点4反比例函数与一次函数、几何图形的综合16.2020重庆A卷如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE,BE.若AD平分OAE,反比例函数y=kx(k0,x0)的图象经过AE上的点A,F,且AF=EF,ABE的面积为18,则k的值为( B )A.6B.12C.18D.2417.2020山东滨州若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=2x.18.2020北京在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵

32、坐标分别为y1,y2,则y1+y2的值为0.19.2020安徽如图,一次函数y=x+k(k0)的图象与x轴和y轴分别交于点A和点B,与反比例函数y=kx的图象在第一象限内交于点C,CDx轴,CEy轴,垂足分别为点D,E.当矩形ODCE与OAB的面积相等时,k的值为2.20.2020四川成都如图,在平面直角坐标系xOy中,反比例函数y=mx(x0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若AOB的面积为BOC的面积的2倍,求此直线的函数表达式.解:(1)把A(3,4)代入反比例函数的表达式中,得m=34=12,故反比例函

33、数的表达式为y=12x.(2)把A(3,4)代入y=kx+b,得4=3k+b,则b=4-3k,故该直线的表达式为y=kx+4-3k.当x=0时,y=4-3k,则OC=|4-3k|.当y=0时,x=3k-4k,则OB=|3k-4k|,SAOB=12OB4=12|3k-4k|4,SBOC=12OBOC=12|3k-4k|4-3k|,由SAOB=2SBOC,得12|3k-4k|4=12|3k-4k|4-3k|2,化简,得|4-3k|=2,k=2或k=23,故此直线的函数表达式为y=2x-2或y=23x+2.21.2020四川宜宾如图,一次函数y=kx+b的图象与反比例函数y=mx(x0)的图象相交于

34、点A(-3,n),B(-1,-3),与x轴、y轴分别交于点P,Q,过点A作ACOP于点C,连接OB.(1)求一次函数和反比例函数的表达式;(2)求四边形ABOC的面积.解:(1)将B(-1,-3)代入y=mx,得-3=m-1,m=3,反比例函数的表达式为y=3x(x0)的图象经过点A(4,32),点B在y轴的负半轴上,直线AB交x轴于点C,C为线段AB的中点.(1)m=6,点C的坐标为(2,0).(2)若点D为线段AB上的一个动点,过点D作DEy轴,交反比例函数图象于点E,连接OD,OE.求ODE面积的最大值.解:(1)6(2,0)解法提示:将A(4,32)代入y=mx,得32=m4,解得m=

35、6.点C在x轴上,且为线段AB的中点,点C的坐标为(42,0),即(2,0).(2)设直线AB的函数表达式为y=kx+b.将A(4,32),C(2,0)分别代入,得4k+b=32,2k+b=0,解得k=34,b=-32.直线AB的函数表达式为y=34x-32.点D在线段AB上,可设D(a,34a-32),则E(a,6a),易知0a4,SODE=12a(6a-34a+32)=-38a2+34a+3=-38(a-1)2+278.-380,当a=1时,ODE的面积最大,最大值为278.23.2020贵州贵阳如图,一次函数y=x+1的图象与反比例函数y=kx的图象相交,其中一个交点的横坐标是2.(1)

36、求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位长度,求平移后的图象与反比例函数y=kx的图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=kx的图象没有公共点.解:(1)将x=2代入一次函数y=x+1,得y=3,k=23=6,反比例函数的表达式是y=6x.(2)一次函数y=x+1的图象向下平移2个单位长度,得到新的图象的表达式为y=x-1.令x-1=6x,整理,得x2-x-6=0,解得x1=-2,x2=3.故平移后的图象与反比例函数图象的交点坐标为(-2,-3),(3,2).(3)y=-2x+5(答案不唯一).解法提示:设满足题意的一次函

37、数表达式为y=ax+b,把(0,5)代入,得b=5,一次函数的表达式为y=ax+5.令ax+5=6x,整理,得ax2+5x-6=0.两个函数的图象没有公共点,0,25+24a0,a-2524,故该一次函数只要符合b=5,a0,x0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分的面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为275.第五节二次函数的图象与性质基础分点练(建议用时:60分钟)考点1二次函数的图象与性质1.抛物线y=x2-2x+2的顶点坐标为( A )A.(1,1) B.(-1,1) C.(1,3) D.(-1

38、,3) 2.2020福建已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2-2ax上的点,下列命题正确的是( C )A.若|x1-1|x2-1|,则y1y2B.若|x1-1|x2-1|,则y1y2C.若|x1-1|=|x2-1|,则y1=y2D.若y1=y2,则x1=x23.2020浙江温州已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则( B )A.y3y2y1 B.y3y1y2 C.y2y3y1 D.y1y3y24.2020石家庄长安区质量检测老师给出了二次函数y=ax2+bx+c(a0)的部分对应值如下表:x-3-20135y70-8-9-57同学们讨论得出了下列结论:抛物线的开口向上;抛物线的对称轴为直线x=2;当-2x0;x=3是方程ax2+bx+c+5=0的一个根;若A(x1,5),B(x2,6)在抛物线上,且点A在点B左侧,则x1y2B.3a+c=0C.方程ax2+bx+c=-2有两个不相等的实数根D.当x0时,y随x的增大而减小11.2020唐山路北区一模已知二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:abc0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论