薄壁矩形管受压柱的局部稳定试验报告.1251051汪凡_第1页
薄壁矩形管受压柱的局部稳定试验报告.1251051汪凡_第2页
薄壁矩形管受压柱的局部稳定试验报告.1251051汪凡_第3页
薄壁矩形管受压柱的局部稳定试验报告.1251051汪凡_第4页
薄壁矩形管受压柱的局部稳定试验报告.1251051汪凡_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、钢结构基本原理课程实验报告薄壁矩形管受压构件局部稳定实验报告试验名称 薄壁矩形管受压柱的局部稳定试验试验课教师周锋姓名汪凡学号1251051联系方式11wa ngfanton .c n理论课教师吴明儿日期2014年11月4日钢结构基本原理实验报告薄壁矩形管受压构件局部稳定实验姓名:汪凡学号:1251051一、实验目的1 通过试验掌握钢构件的试验方法,包括试件设计、加载装置设计、测点布置、试验 结果整理等方法。2. 通过试验观察薄壁构件的局部失稳现象。3. 通过试验观察薄壁构件的屈曲后性能。4. 通过试验观察薄壁构件板组约束现象。5将理论承载力和实测承载力进行对比,验证薄壁构件局部

2、屈曲临界压力和屈曲后承载力的计算公式。二、实验原理2.1轴心受压实腹式构件局部失稳临界力的准则轴心受压实腹式构件局部失稳临界力的准则有两种:一种是不允许出现局部失稳,板件受到的临界应力b应小于局部失稳的临界应力bcr, d心cr;另一种是允许出现局部失稳,并利用板件屈曲后的强度,要求板件受到的轴力N应小于板件发挥屈曲后强度的极限承载力 Nu, NNu。2.2四边简支矩形板的弹性屈曲机理图1所示为一两端受均布压力N x= t b的弹性简支矩形薄板,t为板的厚度。当压w表示。力N x逐渐增加到屈曲临界力时,平板就开始屈曲,屈曲挠度用r 1 - A- W曲腔个事波(m-l图1矩形薄板的屈曲根据弹性理

3、论,板在纵向均布压力作用下,板中面的屈曲平衡微分方程为44w c wD2-x x y4)4 y4wNx0x式中D 板的单位宽度的抗弯刚度,u钢材的泊松比。对于简支矩形板,方程的解 w可用下列双重三角级数表示:h- - a sin一-a b上式满足四个简支边上挠度和弯矩均为零的边界条件,式中 y方向的半波数,a和b分别为板的长度和宽度。将代入式,可得 Nx的临界值Nxcr ,m为x方向的半波数,n为mb当n=1时,临界力Nxcr最小。物理意义是:当板屈曲时,沿 因此临界力为y轴方向只有一个半波。式中,k为板的稳定系数,对于均匀受压的简支矩形板,mb a+)a mb取x方向半波数m=1 , 2,

4、3, 4等,可得到图2 所示k与a/b的关系曲线。其物理意义是:当板屈曲时,沿 y轴方向总是有k为最小值的半波数。如当 a/ b v2时,板屈曲成一个半波;当v2 a /b v6时,板屈曲成二个半波;当 v6 a /b 1时,k值没有多大变化,差 不多都等于4。因此,对于纵向均匀受压的简支矩形板可取k = 4。将代入式得临界应力表达式2.2板组约束对弹性屈曲荷载的影响截面由多块板件组成,故应考虑板组间的约束因素。即k值应包括板组间的约束系数Z对箱形截面,有j -(与 _0朋10J + 32.3矩形四边简支班屈曲后的性能由于板屈曲后板面内有横向的薄膜张力,其对板的进一步弯曲起约束作用,使板件能够

5、继续承受更大的压力。nTHrmTrnT1rr ya xz/p+v图3板屈曲后,板面内应力分布规律板屈曲后强度的计算可以采用有效宽厚比计算。有效宽度的计算采用经验公式be b1 1(1 0.22 )ee其中be 板间的有效宽度;b 板件的实际宽度;i1ecre板件采用有效宽度时的应力;K板件失稳时的稳定系数。试件设计81试件实测几何参数和力学性能:名义截面和实测截面有差别,实测3各截面:实测截面单位平均值截面1截面2截面3截面宽度B1mm99.4099.3399.2099.67截面宽度B2mm199.73199.60199.40200.20板厚T1mm2.482.482.512.46板厚T2mm

6、2.472.472.432.52板厚T3mm2.482.482.512.46板厚T4mm2.472.472.432.52平均板厚Tmm2.48试件长度Lmm400.10400.10400.10400.10拉伸实验测量钢材力学性能:材性试验单位屈服强度fyMPa267.00弹性模量EMPa206000.00拉断强度fuMPa402.00四、测点布置根据失稳半波数合理布置应变片:C1CCeG科中載页应爻片M AS五、实验装置及加载方式5.1实验装置:千斤顶,油压传感器,位移计,应变片,数据采集板。千斤顶为加载设备,由千斤顶及反力梁施加压力; 压力传感器测定荷载值; 纵向位移计测量试件侧向位移,竖向

7、位移计测量试件纵向伸缩变形; 应变片测量试件纵向应变;5.2加载方式千斤顶通过厚钢板将荷载施加于构件两端,并调整使之作用点与截面形心尽量重合。视为均布轴心荷载。正式加载之前要进行预加载。加载初期:分级加载,每级荷载约10%*Pu,时间间隔约2分钟。接近破坏:连续加载,合理控制加载速率,连续采集数据。卸载阶段:缓慢卸载。六、承载力估算6.1按四边简支梁不考虑板组约束计算屈曲临界承载力 计算公式:xcr2E5PxcrC=xcr A单位宽面B2窄面B1钢材的泊松比0.30.3t/b0.01240.0249考虑板组约束局部失稳临界bcr0MPa114.8463.5截面面积AmmA2495.3246.5

8、考虑板组约束失稳临界对应的荷载Pcr0kN170.36.2考虑板组约束计算屈曲临界承载力临界力公式:板组约束系数:稳定系数:10 + 3单位宽面B2窄面B1约束系数Z0.505考虑板组约束后的稳定系数k5.06板组约束系数X1.26考虑板组约束局部失稳临界bcr0MPa182.8截面面积AmmA2195.3246.5考虑板组约束失稳临界对应的荷载Pcr0kN271.36.3考虑屈曲后强度有效宽度经验公式:beb丄(1 0.22 丄)ee单位宽面B2窄面B1采用有效宽度时的应力beMPa267.00267.00局部失稳临界c crMPa114.8463.5板件的等效长细比入e1.5250.759

9、有效宽度比 be/b0.5610.936有效宽度bemm112.193.0有效面积AemmA2277.9230.6考虑屈曲后强度的承载力PuOkN271.5七、实验现象及结果7.1实验现象在初始加载时,变形主要表现为竖向变形, 侧向变形不明显。随着荷载的增加侧向变形逐渐增大。最终试件在长边纵向屈曲成三个半波,短边形变不明显,形成薄壁构件的局部失稳,实际屈曲形式表现为:上部、下部凸出,中部凹陷。当随着应变和位移的增大,荷载不再增加时,试件达到了其极限承载能力。试件最终破坏形式:局部失稳。7.2实验数据处理删掉不合理的数据,用Excel软件处理数据,绘制图形。荷载-位移曲线-10250200151

10、0050-51015-50位移mm八、实验结果的分析8.1实验设计的是轴心受压的方矩形管的局部失稳,但是从29-6和29-2这两个对称位置的应变数据的差值判断,该试验中集中荷载有偏心情况。由24得到应变差,y得到曲率,h又Ely M ,M Ne求得偏心距。采用稳定阶段的29-6和29-2的数据,计算可得偏心距 e=14mm.8.2通过观察试验中宽面和窄面的变形关系可以发现板组之间的协调关系。实验过程中由于板组间的约束,屈曲出现的时间较晚。宽面由于受到窄面的约束,在开 始阶段变形不明显,随着荷载的增大,板组约束减小,屈曲发展并加快。宽面先发生屈曲。由于宽面对窄面的约束作用,在试件破坏时窄面变形较小,屈曲现象 不明显。8.3实验破坏最终为塑性破坏。当板件屈服时达到屈服应变:61296 106m 1296 m267 102.06 105 106从实验数据中可以看到29-2、29-3、29-7先到达屈服,29-6随后达到屈服,29-4、29-8、29-5随后依次屈服。大部分区域达到屈服应变,表现出了钢结构良好的延性。8.4板件的破坏最终为强度破坏。而后产生屈曲后强度, 且该强度对实验数据分析得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论