版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第八章 RLC电路与常微分方程的解法,8.1 RC电路与常微分方程的欧拉解法 RC电路: K 2 1 R C 先把开关K接通“1” 端,电容C充满电后再把开关K接通“2”端,则这时电容C放电过程满足方程: 即电容C上的电量是时间t的函数,满足以上微分方程,如果设: =RC, t=0时刻电容所带电量为Q0 则有: 考虑数值微分问题: 已知: 求f(x) 在xn 点的导数. 可以: 或,微分方程化为一般形式: 把时间t等间隔离散化: 其中: 做如下近似: 由方程得,即: 记: 则得到解微分方程的欧拉法递推公式: 对于RC电路: 令,得到: 方程的解析解,微分方程化为一般形式: 把时间 t 等间隔离
2、散化: 其中: 欧拉(Euler) 差分公式: 由方程得,即: 记: 则得到解微分方程的欧拉法递推公式: 对于RC电路: 例如,得到,rc(1,6,1,10,欧拉法也可解释为Q(t)在tn处的泰勒展开: 取线性部分: 欧拉方法的截断误差,例: 写出解如下一阶常微分方程的欧拉公式: 得,8.2 RLC电路和改进的欧拉近似法 RLC 电路图: L R C Va K 根据基尔霍夫定律: 由于,得: 由于: 所有: 欧拉法: 把二阶微分方程化成一阶微分方程组,其中t是自变量,Q和I随着t的改变而改变,function Q,I,tt=rlc(Q0,I0,con,T,dt) % RLC电路欧拉解法 Q(1
3、)=Q0;I(1)=I0; R=con(1);L=con(2);C=con(3);V=con(4); tt=0:dt:T; for n=1:length(tt)-1 Q(n+1)=Q(n)+dt*I(n); I(n+1)=I(n)+dt*(V-R*I(n)-Q(n)/C)/L; end plot(tt,Q,r,tt,I,b,rlc(1,0,1,1,1,5,15,0.1,rlc(1,0,1,5,1,5,50,0.1,2. 向后的欧拉方法 方法分为两步: 预估: (一步)校正,或者(k+1步)校正,function Q,I,tt=rlc1(Q0,I0,con,T,dt) % RLC电路向后欧拉解法
4、 Q(1)=Q0;I(1)=I0; R=con(1);L=con(2);C=con(3);V=con(4); tt=0:dt:T; for n=1:length(tt)-1 Q1=Q(n)+dt*I(n); I1=I(n)+dt*(V-R*I(n)-Q(n)/C)/L; Q(n+1)=Q(n)+dt*I1; I(n+1)=I(n)+dt*(V-R*I1-Q1/C)/L; end plot(tt,Q,r-,tt,I,b,rlc1(1,0,1,1,1,5,15,0.1); hold on rlc(1,0,1,1,1,5,15,0.1,3. 改进的欧拉法 方法分两步: 预估: (一步)校正,或(k+
5、1步)校正,function Q,I,tt=rlc2(Q0,I0,con,T,dt) % RLC电路改进欧拉解法 Q(1)=Q0;I(1)=I0; R=con(1);L=con(2);C=con(3);V=con(4); tt=0:dt:T; for n=1:length(tt)-1 Q1=Q(n)+dt*I(n); I1=I(n)+dt*(V-R*I(n)-Q(n)/C)/L; Q(n+1)=Q(n)+dt*(I1+I(n)/2; I(n+1)=I(n)+dt*(V-R*(I1+I(n)/2- (Q1+Q(n)/2/C)/L; end plot(tt,Q,r:,tt,I,b:,RC电路: 向
6、后的欧拉法: 预估: 校正: 改进的欧拉法: 预估: 校正,function Q1,Q2,Q3,tt=rc3(Q0,T,dt,tao) % RC电路欧拉解法 Q1(1)=Q0;Q2(1)=Q0;Q3(1)=Q0; tt=0:dt:T; for n=1:length(tt)-1 Q1(n+1)=Q1(n)-dt*Q1(n)/tao; end for n=1:length(tt)-1 Q=Q2(n)-dt*Q2(n)/tao; Q2(n+1)=Q2(n)-dt*Q/tao; end for n=1:length(tt)-1 Q=Q3(n)-dt*Q3(n)/tao; Q3(n+1)=Q3(n)-d
7、t*(Q+Q3(n)/2/tao; end Qa=Q0*exp(-tt/tao); plot(tt,Qa,b,tt,Q1,r-,tt,Q2,r-,tt,Q3,r:,rc3(1,6,1,10,一般微分方程: 向后的欧拉法: 改进的欧拉法,8.3 龙格-库塔(R-K)方法 对于微分方程: 根据微分中值定理: 即,Q(t) tn tn+1 用tn处Q(t)的导数代替处导数 f(,Q(),则为欧拉法: 用tn+1处Q(t)的导数的估计值代替处导数 f(,Q(),则为向后的欧拉法,即: 用tn和tn+1处Q(t)的导数的估计值的平均代替处导数 f(,Q(),则为改进的欧拉法: 若取多点处斜率(即导数)的
8、加权平均会使误差更小,称为龙格-库塔法,最常用的四阶龙格-库塔法,例1: 求解方程: 梯形法: 四阶龙格-库塔法,有,function y1,y2,xx=rk1(y0,X,dx) % 矩形法和四阶龙格-库塔法 y1(1)=y0;y2(1)=y0; xx=0:dx:X; for n=1:length(xx)-1 y=y1(n)+dx*y1(n); y1(n+1)=y1(n)+dx*(y1(n)+y)/2; end for n=1:length(xx)-1 k1=y2(n); k2=y2(n)+dx*k1/2; k3=y2(n)+dx*k2/2; k4=y2(n)+dx*k3; y2(n+1)=y
9、2(n)+dx*(k1+2*k2+2*k3+k4)/6; end y=exp(xx); plot(xx,y,b,xx,y1,r-,xx,y2,r:,rk1(1,5,1,例2: 四阶的龙格-库塔公式,例3: 四阶的龙格-库塔公式,微分方程组,龙格-库塔公式,例4: 求解阻尼振动方程 首先把它转化为一阶微分方程组,四阶龙格-库塔公式,function x,v,tt=rk2(m,k,c,x0,v0,T,dt) % 四阶龙格-库塔法 x(1)=x0;v(1)=v0; tt=0:dt:T; for n=1:length(tt)-1 k1=v(n); l1=-(c*v(n)+k*x(n)/m; k2=v(
10、n)+dt*l1/2; l2=-(c*(v(n)+dt*l1/2)+k*(x(n)+dt*k1/2)/m; k3=v(n)+dt*k2/2; l3=-(c*(v(n)+dt*l2/2)+k*(x(n)+dt*k2/2)/m,k4=v(n)+dt*k3; l4=-(c*(v(n)+dt*l3)+k*(x(n)+dt*k3)/m; x(n+1)=x(n)+dt*(k1+2*k2+2*k3+k4)/6; v(n+1)=v(n)+dt*(l1+2*l2+2*l3+l4)/6; end plot(tt,x); h=line(Color,1 0 0, Marker,.,MarkerSize,20,EraseMode,xor); for i=1:length(tt) set(h,Xdata,tt(i),Ydata,x(i); pause(dt); end,x,v,tt=rk2(10,10,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高安市九年级上学期语文期中考试卷
- 二年级数学计算题专项练习集锦
- 脱硫废水零排放技术协议书(2篇)
- 高中技术学业水平测试试卷
- 南京工业大学浦江学院《食品标准与法规》2022-2023学年第一学期期末试卷
- 翰林国际(原曹妃甸科教城共享居住及配套)土地固化施工组织设计
- 多种多样的生态系统说课稿
- gkh说课稿第课时
- 《小数的性质》说课稿
- 租地合同范本(2篇)
- 【参考】华为腾讯职位管理0506
- 五年级英语上册Unit1Getupontime!教案陕旅版
- 风机安装工程质量通病及预防措施
- 三角形钢管悬挑斜撑脚手架计算书
- 文件和文件夹的基本操作教案
- 剪纸教学课件53489.ppt
- 旅游业与公共关系PPT课件
- 劳动法讲解PPT-定稿..完整版
- 彩色的翅膀_《彩色的翅膀》课堂实录
- 假如你爱我的正谱
- 铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆检测报告可修改
评论
0/150
提交评论