




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、单纯形法原理讲解,本节通过一个引例,可以了解利用单纯形法求解线性规划问题的思路,并将每一次的结果与图解法作一对比,其几何意义更为清楚。,单纯形法原理讲解,引例(上一章例),单纯形法原理讲解,求解线性规划问题的基本思路,1、构造初始可行基; 2、求出一个基可行解(顶点) 3、最优性检验:判断是否最优解; 4、基变化,转2。要保证目标函数值比 原来更优。,从线性规划解的性质可知求解线性规划问题的基本思路。,单纯形法原理讲解,第1步 确定初始基可行解,根据,显然 , 可构成初等可行基B 。,为基变量,单纯形法原理讲解,第2步 求出基可行解,基变量用非基变量表示,并令非基变量为 0时对应的解,是否是最
2、优解?,单纯形法原理讲解,第3步 最优性检验,分析目标函数,检验数,0 时,,无解 换基,继续,只要取 或 的 值可能增大。,换入?基变量 换出?基变量,考虑将 或 换入为基变量,单纯形法原理讲解,第4步 基变换,换入基变量:,换入变量,均可换入。,单纯形法原理讲解,换出变量,使换入的变量越大越好 同时,新的解要可行。,选非负 的最小者对应的变量换出,为换入变量,应换出 ? 变量。,思考:当 时会怎样?,单纯形法原理讲解,因此,基由 变为,为换入变量,应换出 变量。,单纯形法原理讲解,转 第2步,单纯形法原理讲解,继续迭代, 可得到:,最优值,最优解,单纯形法原理讲解,结合图形法分析(单纯形法
3、的几何意义),A(0,3),B(2,3),C(4,2),D(4,0),单纯形法原理讲解,单纯形法迭代原理,从引例中了解了线性规划的求解过程,将按上述思路介绍一般的线性规划模型的求解方法单纯形法迭代原理。,单纯形法原理讲解,观察法:直接观察得到初始可行基 约束条件: 加入松弛变量即形成可行基。(下页) 约束条件: 加入非负人工变量, 以后讨论.,1、初始基可行解的确定,单纯形法原理讲解,1、初始基可行解的确定,不妨设 为松弛变量,则约束方程组可表示为,单纯形法原理讲解,1、初始基可行解的确定,单纯形法原理讲解,2、最优性检验与解的判别,单纯形法原理讲解,2、最优性检验与解的判别,代入目标函数有:
4、,单纯形法原理讲解,2、最优性检验与解的判别,单纯形法原理讲解,(1) 最优解判别定理:若: 为基可行解,且全部 则 为最优解。 (2)唯一最优解判别定理:若所有 则存在唯一最优解。,2、最优性检验与解的判别,单纯形法原理讲解,(3)无穷多最优解判定定理:若: 且存在某一个非基变量 则存在无穷多最优解。 (4)无界解判定定理:若有某一个非基 变量 并且对应的非基变量的系数 则具有无界解。,2、最优性检验与解的判别,单纯形法原理讲解,(4)之证明:,2、最优性检验与解的判别,单纯形法原理讲解,最优解判断小结 (用非基变量的检验数),以后讨论,单纯形法原理讲解,3、基变换,换入变量确定 对应的 为换入变量. (一般),注意:只要 对应的变量 均可作为换入变量,此时,目标函数,单纯形法原理讲解,换出变量确定,3、基变换,则对应的 为换出变量.,单纯形法原理讲解,4、迭代运算,写成增广矩阵的形式,进行迭代.,单纯形法原理讲解,例:,4、迭代运算,非基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实验室安全规定
- 2025年滑雪教练职业技能测试卷:2025年滑雪教练冰雪运动项目赛事运营与管理试题
- 2025年报关员职业资格考试试卷:报关员职业资格考试备考策略与冲刺复习押题预测试题
- 特别声明性质的工作情况说明证明(6篇)
- 展开想象翅膀的想象作文8篇范文
- 电子商务领域销售代表工资单证明(7篇)
- 一次难忘的生日记事回忆10篇
- 美妆个性化定制服务模式在美容院服务流程优化中的应用报告
- 保护环境从我做起议论文分享7篇
- 时间沙漏写物作文(11篇)
- 2025年陕西省中考数学试题(解析版)
- 北师大版7年级数学下册期末真题专项练习 03 计算题(含答案)
- 小学生汇报讲课件
- 职业卫生管理制度和操作规程标准版
- 小学信息技术四年级下册教案(全册)
- 党课课件含讲稿:《关于加强党的作风建设论述摘编》辅导报告
- GB/T 19023-2025质量管理体系成文信息指南
- 多余物管理制度
- 2024北京朝阳区三年级(下)期末语文试题及答案
- 灌肠技术操作课件
- 电梯维保服务投标方案
评论
0/150
提交评论