《等差数列》教案_第1页
《等差数列》教案_第2页
《等差数列》教案_第3页
《等差数列》教案_第4页
《等差数列》教案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等差数列(一) 学习目标:1明确等差数列的定义,探索并掌握等差数列的通项公式; 2会解决知道中的三个,求另外一个的问题; 3通过与一次函数的图像类比,探索等差数列的通项公式的图像特征与一次函数之间的联系。 教学重点:等差数列的概念,等差数列的通项公式教学难点:等差数列的性质教学方法:探究、交流、实验、观察、分析内容分析: 本节是等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么表示等差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看两点可以决定一条直线) 教学过程:一、复习

2、引入:上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法列举法、通项公式法、递推公式法、图象法和前n项和公式这些方法从不同的角度反映了数列的特点。现在我们先看下面这些问题:1回忆数列的概念,数列有哪几种表示方法? 2.(1)小明觉得自己英语成绩很差,目前他的单词量只有 yes、no、you、me、he 5个,他决定从今天起每天背记10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,问:多少天后他的单词量达到3000?(2)小芳觉得自己英语成绩很棒,她目前的单词量多达3000她打算从今天起不再背单词了,结果不知不觉地每天忘掉5个单词,那么从今天开始,她的单词量

3、逐日递减,依次为:3000,2995,2990,2985,问:多少天后她那3000个单词全部忘光?从上面两例中,我们分别得到两个数列: 5,15,25,35, 3000,2995,2990,2985,观察以上两个数列,看看它们有什么共同特征?3.根据以上两个数列,每人能举出2个与其特征相同的数列吗?4.什么是等差数列?这样理解等差数列?其中的关键字词是什么?5.以上两个数列存在通项公式吗?如果存在,分别是什么?6.怎样推导等差数列的通项公式?学生讨论、分析以上几个问题引导学生观察相邻两项间的关系,得到:对于数列,从第2项起,每一项与前一项的差都等于_ 10_ ; 对于数列,从第2项起,每一项与

4、前一项的差都等于 -5 ;共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(PS.每相邻两项的差相等应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字等差数列二、讲解新课: 1等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) 注意:名称:等差数列,首项 , 公差 ,若 则该数列为常数列公差d一定是由后项减前项所得,而不能用前项减后项来求;(3)对于数列,若=d (与n无关的数或字母),n2,nN,则此数列是等差数列,d 为公差那么对于以上两组等差数列,它们

5、的首相分别是5和3000,公差分别是10和-10。2等差数列的通项公式:【或】等差数列定义是由一数列相邻两项之间关系而得若一等差数列的首项是,公差是d,则据其定义可得:即:即:即:由此归纳等差数列的通项公式可得:已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项如数列 5,15,25,35,;(n1)数列 3000,2995,2990,2985,; (n1)数列 (n1)由上述关系还可得:即:则:=即等差数列的第二通项公式 d=如:三、例题讲解例1 求等差数列8,5,2的第20项 -401是不是等差数列-5,-9,-13的项?如果是,是第几项?解:由n=20,得由得数列通项公式为:由

6、题意可知,本题是要回答是否存在正整数n,使得成立解之得n=100,即-401是这个数列的第100项例2 在等差数列中,已知,求,解法一:,则 解法二: 小结:第二通项公式 四、课堂练习:1.(1)求等差数列3,7,11,的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所求项.解:根据题意可知:=3,d=73=4.该数列的通项公式为:=3+(n1)4,即=4n1(n1,nN*)=441=15, =4101=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,的第20项.解:根据题意可知:=10,d=810=2.该数列的通项公式为:=10+(n

7、1)(2),即:=2n+12,=220+12=28.评述:要注意解题步骤的规范性与准确性.(3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由.分析:要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n值,使得等于这一数.解:根据题意可得:=2,d=92=7.此数列通项公式为:=2+(n1)7=7n5.令7n5=100,解得:n=15, 100是这个数列的第15项.(4)20是不是等差数列0,3,7,的项?如果是,是第几项?如果不是,说明理由. 解:由题意可知:=0,d=3 此数列的通项公式为:=n+,令n+=20,解得n=因为n+=20没有正整数

8、解,所以20不是这个数列的项.2.在等差数列中,(1)已知=10,=19,求与d;(2)已知=9, =3,求.解:(1)由题意得:, 解之得:.(2)解法一:由题意可得:, 解之得该数列的通项公式为:=11+(n1)(1)=12n,=0解法二:由已知得:=+6d,即:3=9+6d,d=1又=+3d,=3+3(1)=0.五、课堂小结 通过本节学习,首先,要理解与掌握等差数列的定义及数学表达式:=d ,(n2,nN).其次,要会推导等差数列的通项公式:,并掌握其基本应用.最后,还要注意一重要关系式:和=pn+q (p、q是常数)的理解与应用.六、课后作业:一、选择题:1等差数列项的和等于( ) ABCD2若成等差数列,则的值等于( )A B或 C D3在等差数列中,若,则的值为( )二、填空题4计算_.5已知数列an,满足a1=1,an=a1+2a2+3a3+(n1)an1(n2),则n2时,an= _ 6已知关于x的方程x23xa=0和x23xb=0(ab)的四个根组成首项为的等差数列,求ab的值.七、设计感想本教案设计突出了重点概念的教学,突出了等差数列的定义和对通项公式的认识与应用。等差数列是特殊数列,定义恰恰是其特殊性也是本质属性的准确反映和高度概括,准确地把握定义是正确认识等差数列,解决相关问题的前提条件。通项公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论