



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.求函数解析式的九种常用方法一、换元法已知复合函数f g(x)的解析式,求原函数f(x)的解析式, 把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。例1 已知f()= ,求f(x)的解析式.解: 设= t ,则 x= (t1),f(t)= = 1+ +(t1)= t2t+1故 f(x)=x2x+1 (x1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f(+1)= x+2,求f(x)的解析式.解: f(+1)= +2+11=1, f(+1)= 1 (+11),将+1视为自变量x,则有f(x)= x21 (x1).评注: 使用配凑法时,一定要注意
2、函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。例3 已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则 f(0)= c= 0 f(x+1)= a+b(x+1)= ax2+(2a+b)x+a+b 由f(x+1)= f(x)+2x+8 与、 得 解得 故f(x)= x2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f(x)满足f(x)+2 f()= x (x0
3、),求f(x)函数解析式.分析:欲求f(x),必须消去已知中的f(),若用去代替已知中x,便可得到另一个方程,联立方程组求解即可.解: f(x)+2 f()= x (x0) 由代入得 2f(x)+f()=(x0) 解 构成的方程组,得 f(x)= (x0).评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程练习:已知定义在R上的函数满足,求的解析式。五、特殊值法例5 设是定义在R上的函数,且满足f(0)=1,并且对任意的实数x,y,有f(xy)= f(x) y(2xy+1),求f(x)函数解析式.分析:要f(0)=1,x,y是任意的实数及f(xy)= f(x) y(2xy+
4、1),得到f(x)函数解析式,只有令x = y.解: 令x = y ,由f(xy)= f(x) y(2xy+1) 得f(0)= f(x) x(2xx+1),整理得 f(x)= x2+x+1.练习: 已知函数的定义域为R,并对一切实数x,y都有,求的解析式。六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R上的奇函数,当x0时,f(x)=2xx2,求f(x)函数解析式.解:y=f(x)是定义在R上的奇函数, y=f(x)的图象关于原点对称.当x0时,f(x)=2xx2的顶点(1,1),它关于原点对称点(1,1), x0,x0.因此当x0时,y=1= x2 +2x.故 f(x)=评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.七、函数性质法利用函数的性质如奇偶性、单调性、周期性等求函数解析式的方法。例6. 已知函数是R上的奇函数,当的解析式。解析:因为是R上的奇函数,所以,当,所以八、反函数法利用反函数的定义求反函数的解析式的方法。例7. 已知函数,求它的反函数。解:因为,反函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国展览行业市场深度调研及竞争格局与投资策略研究报告
- 2025-2030中国宠物线上服务行业运行态势与未来前景趋势研究研究报告
- 2025-2030中国女士运动服行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国外卖行业市场发展前瞻及投资战略研究报告
- 2025-2030年中国抽油机节油拖动装置项目投资可行性研究分析报告
- 2025-2030年中国金属装饰片行业深度研究分析报告
- 2025-2030年中国高中档粗纺呢行业深度研究分析报告
- 2025-2030年中国前四后八车厢行业深度研究分析报告
- 2025-2030年中国夜光脚踏板行业深度研究分析报告
- 2025-2030年中国制药冲模行业深度研究分析报告
- 中医护理方案的应用
- 《马克思主义原理》课件
- 新生儿常见导管护理
- 家政服务行业环保管理制度
- 完整的欠货款协议书范文范本
- 2024年山东省济宁市中考生物试题卷(含答案解析)
- 浙美版小学二年级下册美术教学计划及教案全册
- 健合集团在线测评原题
- 公路工程标准施工招标文件(2018年版)
- 个人理财-形考作业4(第8-9章)-国开(ZJ)-参考资料
- 2024年江西省职业院校技能大赛(研学旅行赛项)备考试题库(含答案)
评论
0/150
提交评论