高中数学(苏教版必修5)配套课件:第三章不等式3.2(一)_第1页
高中数学(苏教版必修5)配套课件:第三章不等式3.2(一)_第2页
高中数学(苏教版必修5)配套课件:第三章不等式3.2(一)_第3页
高中数学(苏教版必修5)配套课件:第三章不等式3.2(一)_第4页
高中数学(苏教版必修5)配套课件:第三章不等式3.2(一)_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第3章不等式,3.2 一元二次不等式 (一,1.理解一元二次方程、一元二次不等式与二次函数的关系. 2.掌握图象法解一元二次不等式. 3.培养数形结合、分类讨论思想方法解一元二次不等式的能力,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一一元二次不等式的概念,最高次数是2,答案,解析是,符合定义;不是,因为未知数的最高次数是3,不符合定义;不是,当a0时,它是一元一次不等式,当a0时,它含有两个变量x,y;不是,当a0时,不符合一元二次不等式的定义,思考下列不等式是一元二次不等式的有_. x20;3x2x5;x35x60;ax25y

2、0(a为常数);ax2bxc0,解析答案,知识点二一元二次不等式的解法 利用“三个二次”的关系我们可以解一元二次不等式.解一元二次不等式的一般步骤: (1)将不等式变形,使一端为0且二次项系数大于0; (2)计算相应的判别式; (3)当0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集,知识点三“三个二次”(二次函数、一元二次方程、一元二次不等式) 的关系,没有实数根,答案,x|x1xx2,x|xx1或xx2,答案,思考一元二次不等式ax22x10的解集为R,则a的取值范围是_,返回,,1,解析答案,题型探究 重点突破,题型一一元二次不等式的解法 例1解下列不等

3、式: (1)2x27x30,解析答案,解析答案,3)2x23x20,解原不等式可化为2x23x20,因为942270,所以方程2x23x20无实根,又二次函数y2x23x2的图象开口向上,所以原不等式的解集为R,解析答案,反思与感悟,解原不等式可化为x26x100,(6)24040,所以方程x26x100无实根,又二次函数yx26x10的图象开口向上,所以原不等式的解集为,解一元二次不等式的一般步骤 (1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式; (3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x轴的相关位置写出不等式的解集,反

4、思与感悟,跟踪训练1解下列不等式: (1)x25x60,解析答案,解方程x25x60的两根为x11,x26. 结合二次函数yx25x6的图象知, 原不等式的解集为x|x1或x6,2)(2x)(x3)0,解析答案,解原不等式可化为(x2)(x3)0. 方程(x2)(x3)0的两根为x12,x23. 结合二次函数y(x2)(x3)的图象知, 原不等式的解集为x|x3或x2,3)4(2x22x1)x(4x,解析答案,题型二解含参数的一元二次不等式 例2解关于x的不等式:ax2(a1)x10(aR,解析答案,反思与感悟,解原不等式可化为:(ax1)(x1)0, 当a0时,x1,当a1时,x1,解析答案

5、,反思与感悟,综上,当a0时,原不等式的解集是x|x1,反思与感悟,当a1时,原不等式的解集是x|x1,含参数不等式的解题步骤 (1)将二次项系数化为正数;(2)判断相应的方程是否有根(如果可以直接分解因式,可省去此步);(3)根据根的情况写出相应的解集(若方程有两个相异实根,为了写出解集还要比较两个根的大小).另外,当二次项含有参数时,应先讨论二次项系数是否为0,这决定不等式是否为二次不等式,反思与感悟,解析答案,跟踪训练2解关于x的不等式x2(aa2)xa30,解原不等式可化为: (xa)(xa2)0, 讨论a与a2的大小: (1)当a2a即a1或a0时, xa2或xa. (2)当a2a即

6、a0或a1时, xa. (3)当a2a即0a1时, xa或xa2,解析答案,综上,当a0或a1时,解集为x|xa2或xa, 当a0或1时,解集为x|xa, 当0a1时,解集为x|xa或xa2,题型三“三个二次”关系的应用 例3已知一元二次不等式ax2bxc0的解集为(,),且0,求不等式cx2bxa0的解集,解析答案,反思与感悟,解方法一由题意可得a0,且,为方程ax2bxc0的两根,a0,0,由得c0,解析答案,反思与感悟,方法二由题意知a0,解析答案,反思与感悟,将方法一中的代入, 得x2()x10, 即(x1)(x1)0,反思与感悟,求一般的一元二次不等式ax2bxc0(a0)或ax2b

7、xc0)的解集,先求出一元二次方程ax2bxc0(a0)的根,再根据二次函数图象与x轴的相关位置确定一元二次不等式的解集. 当两个“有关联”的不等式同时出现时,应注意根与系数的关系的应用,反思与感悟,解析答案,跟踪训练3已知关于x的不等式x2axb0的解集为x|1x2,求关于x的不等式bx2ax10的解集,解x2axb0的解集为x|1x2, 1,2是方程x2axb0的两根,代入所求不等式,得2x23x10,解析答案,不注意一元二次不等式二次项系数的正负致误,易错点,例4若一元二次不等式ax2bxc0的解集为x|x3或x5,则ax2bxc0的解集为_,防范措施,返回,错解由根与系数的关系得,代入

8、得ax22ax15a0, x22x150, (x3)(x5)0, 5x3. 答案x|5x3,错因 式化为式,忽略了二次项系数a的符号,并非同解变形,解析答案,防范措施,正解由根与系数的关系得,防范措施,ax22ax15a0, 又由解集的形式知a0, 上式化为x22x150, (x3)(x5)0, x3或x5,防范措施,1.注意隐含信息的提取 有些信息是隐含在题设的条件中的,适当挖掘题设信息可较好地完成对解答题目不明信息的突破,如本例借助不等式及其解集的对应关系得出“a0”这一关键信息,从而避免不必要的讨论. 2.注意“三个二次”的关系 二次函数的零点,就是相应一元二次方程的根,也是相应一元二次

9、不等式解集的分界点,返回,当堂检测,1,2,3,4,5,1.下面所给关于x的几个不等式:3x40;x2mx10;ax24x70;x20.其中一定为一元二次不等式的有_个,解析一定是一元二次不等式,2,解析答案,1,2,3,4,5,6,1,解析答案,1,2,3,4,5,3.已知x1是不等式k2x26kx80的解,则k的取值范围是_,k|k2或k4,解析x1是不等式k2x26kx80的解,把x1代入不等式得k26k80,解得k4或k2,解析答案,1,2,3,4,5,解析答案,4.不等式x23x40的解集为_,解析易得方程x23x40的两根为4,1,所以不等式x23x40的解集为(4,1,4,1,1,2,3,4,5,解析答案,5.已知关于x的不等式mx2(2m1)xm10的解集为空集,求实数m的取值范围,解(1)当m0时,原不等式化为x10,x1, 解集非空,课堂小结,1.解一元二次不等式的常见方法 (1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤: 化不等式为标准形式:ax2bxc0(a0)或ax2bxc0); 求方程ax2bxc0(a0)的根,并画出对应二次函数yax2bxc图象的简图; 由图象得出不等式的解集. (2)代数法:将所给不等式化为一般式后借助因式分解或配方求解. 当m0,则可得xn或xm;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论