简单的线性规划第二课时_第1页
简单的线性规划第二课时_第2页
简单的线性规划第二课时_第3页
简单的线性规划第二课时_第4页
简单的线性规划第二课时_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、使z=2x+y取得最大值的可行解为 , 且最大值为,复习引入,1.已知二元一次不等式组,1)画出不等式组所表示的平面区域,满足 的解(x,y)都叫做可行解,z=2x+y 叫做,2)设z=2x+y,则式中变量x,y满足的二元一次不等式组叫做x,y的,y=-1,x-y=0,x+y=1,2x+y=0,1,-1,2,-1,使z=2x+y取得最小值的可行解 , 且最小值为 ; 这两个可行解都叫做问题的,线性约束条件,线性目标函数,线性约束条件,2,-1,1,-1,3,3,最优解,例题分析,例1:某工厂生产甲、乙两种产品.已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1吨需消

2、耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、消耗B种矿石不超过200t、消耗煤不超过360t.甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大,列表,5,10,4,600,4,4,9,1000,设生产甲、乙两种产品.分别为x t、yt,利润总额为z元,例题分析,列表,把题中限制条件进行转化,约束条件,10 x+4y300,5x+4y200,4x+9y360,x0,y 0,z=600 x+1000y,目标函数,设生产甲、乙两种产品.分别为x t、yt,利润总额

3、为z元,xt,yt,例题分析,解:设生产甲、乙两种产品.分别为x t、yt,利润总额为z元,那么,10 x+4y300,5x+4y200,4x+9y360,x0,y 0,z=600 x+1000y,作出以上不等式组所表示的可行域,作出一组平行直线 600 x+1000y=t,10 x+4y=300,5x+4y=200,4x+9y=360,600 x+1000y=0,M,答:应生产甲产品约12.4吨,乙产品34.4吨,能使利润总额达到最大,12.4,34.4,经过可行域上的点M时,目标函数在y轴上截距最大,90,30,75,40,50,40,此时z=600 x+1000y取得最大值,解线性规划应

4、用问题的一般步骤,2)设好变元并列出不等式组和目标函数,3)由二元一次不等式表示的平面区域做出可行域,4)在可行域内求目标函数的最优解,1)理清题意,列出表格,5)还原成实际问题,准确作图,准确计算,二:给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源最小,一:给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大,线性规划研究的两类重要实际问题,巩固练习,咖啡馆配制两种饮料甲种饮料每杯含奶粉9g 、咖啡4g、糖3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g已知每天原料的使用限额为奶粉3600g ,咖啡2000g糖3000g,如果甲种饮料每

5、杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大,解:将已知数据列为下表,设每天应配制甲种饮料x杯,乙种饮料y杯,则,作出可行域: 目标函数为:z =0.7x +1.2y 作直线l:0.7x+1.2y=0, 把直线l向右上方平移至l1的位置时, 直线经过可行域上的点C,且与原点距离最大, 此时z =0.7x +1.2y取最大值 解方程组 得点C的坐标为(200,240,二元一次不等式表示平面区域,直线定界,特殊点定域,简单的线性规划,约束条件,目标函数,可行解,可行域,最优解,求解方法:画、移、求、答,小结,解线性规划应用问题的一般步骤,1)理清题意,列出表格,2)设好变元并列出不等式组和目标函数,3)准确作图,准确计算,知识点,技能点,数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论