




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、选考系列命题点1坐标系与参数方程角度一极坐标与曲线的极坐标方程直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位设m是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(,),则 高考题型全通关1.在极坐标系下,方程2sin 2的图形为如图所示的“幸运四叶草”,又称为玫瑰线(1)当玫瑰线的时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;(2)求曲线上的点m与玫瑰线上的点n距离的最小值及取得最小值时的点m,n的极坐标解(1)以极点为圆心的单位圆为1,与2sin 2联立,得2sin 21,所以sin 2,因为,所以或,从而得到以极点为圆心的
2、单位圆与玫瑰线的交点的极坐标为和.(2)曲线的直角坐标方程为xy4.玫瑰线2sin 2极径的最大值为2,且在点n取得,连接on与xy4垂直且交于点m(图略),所以点m与点n的距离的最小值为22,此时对应的点m,n的极坐标分别为,.点评1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:xcos ,ysin ,2x2y2,tan (x0),要注意,的取值范围及其影响,灵活运用代入法和平方法等技巧2由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解2(2020眉山二诊)在直角坐标系xoy中,曲线c的参数方程为 (为参数),将曲线c经过伸缩变换
3、 后得到曲线c1.在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为cos sin 50.(1)说明曲线c1是哪一种曲线,并将曲线c1的方程化为极坐标方程;(2)已知点m是曲线c1上的任意一点,又直线l上有两点e和f,且|ef|5,又点e的极角为,点f的极角为锐角求:点f的极角;emf面积的取值范围解(1)因为曲线c的参数方程为 (为参数), 则曲线c1的参数方程为所以c1的普通方程为xy4.所以曲线c1为圆心在原点,半径为2的圆所以c1的极坐标方程为24,即2.(2)点e的极角为,代入直线l的极坐标方程cos sin 50得点e的极径为5,且|ef|5,所以eof为等腰三角形
4、,又直线l的普通方程为xy50,又点f的极角为锐角,所以feo,所以foe,所以点f的极角为.法一:直线l的普通方程为xy50.曲线c1上的点m到直线l的距离d.当sin1,即2k(kz)时,d取到最小值为2.当sin1,即2k(kz)时,d取到最大值为2.所以emf面积的最大值为55;emf面积的最小值为55.故emf面积的取值范围为.法二:直线l的普通方程为xy50.因为圆c1的半径为2,且圆心到直线l的距离d,因为2,所以圆c1与直线l相离所以圆c1上的点m到直线l的距离最大值为dr2,最小值为dr2.所以emf面积的最大值为55;emf面积的最小值为55.故emf面积的取值范围为.点评
5、1.解决极坐标与参数方程的综合问题的关键是掌握极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化涉及圆、圆锥曲线上的点的最值问题,往往通过参数方程引入三角函数,利用三角函数的最值求解2数形结合的应用,即充分利用参数方程、参数的几何意义,或者利用和的几何意义,直接求解,能达到化繁为简的解题目的角度二曲线的参数方程曲线的参数方程及注意点(1)直线的参数方程经过点p0(x0,y0),倾斜角为的直线的参数方程为 (t为参数)t的几何意义是的数量,即|t|表示p0到p的距离,t有正负之分使用该式时直线上任意两点p1,p2对应的参数分别为t1,t2,则|p1p2|t1t2|,p1p2的中点对应的参数
6、为(t1t2)(2)圆的参数方程圆心在点m(x0,y0),半径为r的圆的参数方程为 (为参数,02)(3)圆锥曲线的参数方程椭圆1的参数方程为 (为参数)抛物线y22px(p0)的参数方程为 (t为参数)(4)与参数方程有关的两个注意点将参数方程化为普通方程时忽视参数对变量x,y范围的限定致错应用直线参数方程时,忽视不是直线参数方程的标准形式而用其参数t的几何意义致错高考题型全通关1(2020长沙模拟)在直角坐标系xoy中,曲线c的参数方程为(m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为cos1.(1)求曲线c的普通方程以及直线l的直角坐标方程;(2)已知
7、点m,若直线l与曲线c交于p,q两点,求的值解(1)由x2m2,y2m2,故x2y21.又直线l:1xy1,故xy20.(2)由ktan cos ,sin ,故直线l的标准参数方程为(t为参数),将其代入曲线c中,得t22t0 故.点评参数方程化为普通方程消去参数的方法(1)代入消参法:将参数解出来代入另一个方程消去参数,直线的参数方程通常用代入消参法(2)三角恒等式法:利用sin2 cos2 1消去参数,圆的参数方程和椭圆的参数方程都是运用三角恒等式法(3)常见消参数的关系式:t1;4;1.2(2020芜湖模拟)已知直线l: (t为参数),曲线c1: (为参数)(1)设l与c1相交于a,b两
8、点,求|ab|;(2)若把曲线c1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线c2,设点p是曲线c2上的一个动点,求它到直线l距离的最小值解(1)直线l的普通方程为y(x1),c1的普通方程为x2y21.联立方程解得l与c1 的交点为a(1,0),b,则|ab|1.(2)曲线c2 的参数方程为 (为参数),故点p的坐标为,从而点p到直线l的距离是d,由此当sin1时,d取得最小值,且最小值为.命题点2不等式选讲角度一绝对值不等式的常用解法绝对值不等式的常用解法(1)基本性质法:对ar,|x|aaxaxa.(2)平方法:两边平方去掉绝对值符号(3)零点分区间法:含有两个或两个以上
9、绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解(5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解高考题型全通关1(2020深圳模拟)已知函数f(x)|xa|x2|.(1)当a3时,求不等式f(x)3的解集;(2)若f(x)|x4|的解集包含1,2,求a的取值范围解(1)当a3时,f(x)当x2时,由f(x)3得2x53,解得x1;当2x3时,f(x)3无解;当x3时,由f(x)3得2x53,解得x4.所以f(x)3的解集为
10、x|x1或x4(2)f(x)|x4|x4|x2|xa|.当x1,2时,|x4|x2|xa|(4x)(2x)|xa|2ax2a,由条件得2a1且2a2,解得3a0,故满足条件的实数a的取值范围为3,02(2020吉林二模)已知函数f(x)|ax1|x1|.(1)若a2,解关于x的不等式f(x)0时,f(x)1恒成立,求实数a的取值范围解(1)当a2时,f(x)由此可知,f(x)0时,f(x)f(x)的最小值为f和f中的最小值,其中f11,f(1)a11.所以f(x)1恒成立当a0时,f(x)11,且f(1)1,f(x)1不恒成立,不符合题意当a0时,f,f,若2a1不恒成立,不符合题意;若a2,
11、则f1不恒成立,不符合题意综上,a.角度二不等式证明证明不等式的常用方法(1)不等式证明的常用方法有比较法、分析法、综合法等,运用综合法证明不等式时,主要是运用基本不等式证明,证明过程中一方面要注意不等式成立的条件,另一方面要善于对式子进行恰当的转化、变形(2)与绝对值有关的不等式证明常用绝对值三角不等式(3)如果待证的是否定性命题、唯一性命题或以“至少”“至多”等方式给出的问题,则考虑用反证法. 高考题型全通关1(2020江苏一模)已知a,b,c都是正实数,且1.证明:(1)abc27; (2)1.证明(1)a,b,c都是正实数,3,又1,31,即abc27,得证(2)a,b,c都是正实数,
12、2,2,2,由得,2,1,得证2已知函数f(x)|xa|.(1)证明:f(x)2;(2)当a时,f(x)xb,求b的取值范围解(1)证明:f(x)|xa|a|22.(2)当a时,f(x) 作出f(x)的图象,如图由图,可知f(x)xb,当且仅当f(2)2b,解得b,故b的取值范围为.角度三与绝对值不等式有关的最值问题代数式最值的求法(1)形如f(x)|axb|axc|的最值常用绝对值三角不等式求解(2)形如f(x)|axb|cxd|的最值由绝对值的几何意义,转化为分段函数求最值(3)利用基本不等式:ab或abc求最值(4)利用柯西不等式: (aibi)2ab求最值高考题型全通关1设函数f(x)|x1|x|的最大值为m.(1)求m的值;(2)若正实数a,b满足abm,求的最小值解(1)|x1|x|x1x|1,f(x)的最大值为1,m1.(2)由(1)可知,ab1,(a1)(b1)(2aba2b2)(ab)2,当且仅当ab时取等号,的最小值为.2设函数f(x)|2x1|xa|.(1)当a1时,求f(x)的图象与直线y3围成区域的面积;(2)若f(x)的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司联谊现场活动方案
- 公司摆摊美食活动方案
- 公司自制活动策划方案
- 公司男女活动策划方案
- 公司春季烧烤活动方案
- 公司旅游活动策划方案
- 公司组员聚会活动方案
- 公司洞头团建活动方案
- 公司聚餐系列活动方案
- 公司组织撕名牌活动方案
- 面积和面积单位的复习课评课稿
- (完整word版)高考英语作文练习纸(标准答题卡)
- 钢便桥拆除施工方案
- DB13T 5387-2021 水库库容曲线修测及特征值复核修正技术导则
- 职业道德与法治教学课件汇总完整版电子教案
- 蒂森克虏伯电梯 MC2-B控制系统用户手册
- JIS G4305-2021 冷轧不锈钢板材、薄板材和带材
- 危险化学品临界量表(参考)
- 墙柱梁板混凝土同时浇筑方案.doc
- 新生儿视觉训练黑白卡(整理90张必备图卡)
- 矿山地质环境恢复治理方案治理经费估算计算部分
评论
0/150
提交评论