有理数的加法(1)_第1页
有理数的加法(1)_第2页
有理数的加法(1)_第3页
有理数的加法(1)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、七年级数学师生共用讲学稿(N0.7)年级:七年级 执笔:陈桥 内容:有理数的加法(1) 课型:新授 时间: 学习目标:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算.2、经历探究有理数有理数加法法则过程,学会与他人交流合作.3、会利用有理数加法运算解决简单的实际问题.学习重点:和的符号的确定学习难点:异号两数想加教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进

2、1个球,失1个球.于是红队的净胜球数为 4(2),蓝队的净胜球数为 1(1)。这里用到正数和负数的加法。那么,怎样计算4(2)呢2、一艘潜艇在水下20米,过了一段时间又下潜了15米,现在潜艇在水下 米,你是怎么知道的?能用一个算式表示吗? .又该怎样计算呢?下面我们一起借助数轴来讨论有理数的加法。二、探究新知下面的问题请同学们认真思考完成,再与同伴交流交流.1、问题:1)一支球队在某场比赛中,上半场进了两个球,下半场进了3了个球,那么它的净胜球是 个,列出的算式应该是 2)、若这支球队在某场比赛中,上半场失了两个球,下半场又失了3个球,那么它的净胜球是 个,列出的算式应该是 3)、若这支球队在

3、某场比赛中,上半场进了两个球,下半场又失了3个球,那么它的净胜球是 个,列出的算式应该是 4)、若这支球队在某场比赛中,上半场没有进球也没有失球,下半场失了3个球,那么它的净胜球是 个,列出的算式应该是 2、师生归纳两个有理数相加的几种情况.3、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是: 2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了 米.这个问题用算式表示就是: 如图所示: (3页)3)如果向西走2米,再向东走4米, 那么两次运动后,

4、这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:先向东走3米,再向西走5米,这个人从起点向( )走了( )米;先向东走5米,再向西走5米,这个人从起点向( )走了( )米;先向西走5米,再向东走5米,这个人从起点向( )走了( )米。写出这三种情况运动结果的算式 5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 米。写成算式就是 你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)、同号的两数相加,取 的符号,并把 相加.(2)绝对值不相等的异号两数相加,取 的

5、加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 .注意法则的应用,尤其是和的符号的确定!(3)、一个数同0相加,仍得 。三、 应用探究 例1 计算(能完成吗,先自己动动手吧!) (3)(9); (2)(47)39.例2 足球循环赛中,红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。三场比赛中,红队共进4球,失2球,净胜球数为 (+4)+(2)=+(42)=2;黄队共进2球,失4球,净胜球数为(+2)+(4)= (42)= ( );蓝队共进( )球,失( )球,净胜

6、球数为( )=( )。3、课堂练习1填空: 练习2. P18第1、2题(1)(3)+(5)= ; (2)3(5)= ;(3)5+(3)= ; (4)7(7)= ;(5)8(1)= ; (6)(8)1 = ;(7)(6)+0 = ; (8)0+(2) = ;四、谈谈你这堂课的收获,自己作个总结五、作业 P231、P2612、13 4页2计算:(1)(13)+(18); (2)20(14);(3)1.7 + 2.8 ; (4)2.3 + (3.1);(5)()+(); (6)1+(1.5);(7)(3.04)+ 6 ; (8)+().3判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数

7、的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.4当a = 1.6,b = 2.4时,求a+b和a+(b)的值.5已知a= 8,b= 2. (1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.1、 计算:(1)15(22) (2)(13)(8) (3)(0.9)1.51 (4)2、计算:(1)23(17)6(22) (2)(2)31(3)2(4)3、计算:(1) (2)4、计算:(1) (2)拓展提高1、 (1)绝对值小于4的所有整数的和是_;(2)绝对值大于2且小于5的所有负整数的和是_。2、 若,则_。3、 已知且abc,求abc的值。4、 若1a3,求的值。5、 计算:6、 计算:(1)(2)(3)(4)(99)(10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论