版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二数学知识点的归纳总结三篇 1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法. 2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数. 3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数. 4.秦九韶算法是一种用于计算一元二次多项式的值的方法. 5.常用的排序方法
2、是直接插入排序和冒泡排序. 6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k. 7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果. 8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数. 1.重点:理解辗转相除法与更相减损术的原理,会求两个数的公约数;理解秦九韶算法原理,会求一元多项式的值;会对一组数据按照一定的规则进行排序;理解进位制,能进行各种进位制之间的转化. 2.难点:秦九韶
3、算法求一元多项式的值及各种进位制之间的转化. 3.重难点:理解辗转相除法与更相减损术、秦九韶算法原理、排序方法、进位制之间的转化方法. 高二数学知识点(二) (1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,a框和b框是依次执行的,只有在执行完a框指定的操作后,才能接着执行b框所 指定的操作。 (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择
4、不同流向的 算法结构。 条件p是否成立而选择执行a框或b框。无论p条件是否成立,只能执行a框或b框之一,不可能同时执行 a框和b框,也不可能a框、b框都不执行。一个判断结构可以有多个判断框。 (3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类: 一类是当型循环结构,如下左图所示,它的功能是当给定的条件p成立时,执行a框,a框执行完毕后,再判断条件p是否成立,如果仍然成立,再执行a框,如此反复执行a框,直到某一次条件p不成立为止,此时
5、不再执行a框,离开循环结构。 另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件p是否成立,如果p仍然不成立,则继续执行a框,直到某一次给定的条件p成立为止,此时不再执行a框,离开循环结构。 注意: 1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。 2在循环结构中都有一个计数变量和累 加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次 高二数学知识点(三) 一、直线与圆: 1、直线的倾斜角的范围是 在平面直角坐标系中,对于一条与轴相交的直线,如果把
6、轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0; 2、斜率:已知直线的倾斜角为,且90,则斜率k=tan. 过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。 3、直线方程:点斜式:直线过点斜率为,则直线方程为, 斜截式:直线在轴上的截距为和斜率,则直线方程为 4、直线与直线的位置关系: (1)平行a1/a2=b1/b2注意检验(2)垂直a1a2+b1b2=0 5、点到直线的距离公式; 两条平行线与的距离是 6、圆的标准方程:.圆的一般方程: 注意能将标准方程化为
7、一般方程 7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线. 8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相交 9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长 二、圆锥曲线方程: 1、椭圆:方程(ab0)注意还有一个;定义:|pf1|+|pf2|=2a2c;e=长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2; 2、双曲线:方程(a,b0)注意还有一个;定义:|pf1|-|pf2|=2a2c;e=;实轴长为2a
8、,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2 3、抛物线:方程y2=2px注意还有三个,能区别开口方向;定义:|pf|=d焦点f(,0),准线x=-;焦半径;焦点弦=x1+x2+p; 4、直线被圆锥曲线截得的弦长公式: 三、直线、平面、简单几何体: 1、学会三视图的分析: 2、斜二测画法应注意的地方: (1)在已知图形中取互相垂直的轴ox、oy。画直观图时,把它画成对应轴ox、oy、使xoy=45(或135); (2)平行于x轴的线段长不变,平行于y轴的线段长减半. (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度. 3、表(侧)面积与体积公式: 柱体:表面积
9、:s=s侧+2s底;侧面积:s侧=;体积:v=s底h 锥体:表面积:s=s侧+s底;侧面积:s侧=;体积:v=s底h: 台体表面积:s=s侧+s上底s下底侧面积:s侧= 球体:表面积:s=;体积:v= 4、位置关系的证明(主要方法):注意立体几何证明的书写 (1)直线与平面平行:线线平行线面平行;面面平行线面平行。 (2)平面与平面平行:线面平行面面平行。 (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线 5、求角:(步骤-.找或作角;.求角) 异面直线所成角的求法:平移法:平移直线,构造三角形; 直线与平面所成的角:直线与射影所成的角 四、导数:导数的意义-
10、导数公式-导数应用(极值最值问题、曲线切线问题) 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 k=f/(x0)表示过曲线y=f(x)上p(x0,f(x0)切线斜率。v=s/(t)表示即时速度。a=v/(t)表示加速度。 3.常见函数的导数公式:; ;。 4.导数的四则运算法则: 5.导数的应用: (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 (2)求极值的步骤: 求导数; 求方程的根; 列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根
11、处取得极大值;如果左负右正,那么函数在这个根处取得极小值; (3)求可导函数值与最小值的步骤: 求的根;把根与区间端点函数值比较,的为值,最小的是最小值。 五、常用逻辑用语: 1、四种命题: 原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p 注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。 2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”. 3、逻辑联结词: 且(and):命题形式pq;pqpqpqp 或(or):命题形式pq;真真真真假 非(not):命题形式p.真假假真假 假真假真真 假假假假真 “或命题”的真假特点是“一真即真,要假全假”; “且命题”的真假特点是“一假即假,要真全真”; “非命题”的真假特点是“一真一假” 4、充要条件 由条件可推出结论,条件是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑工程公司与施工方分包合同
- 2024年庆典花卉租赁合同
- 2024年度环保设备生产与安装合同
- 2024年企业间关于虚拟现实技术研发合同
- 2024年度BIM模型能耗分析与优化服务合同
- 2024国有林业企业与农村集体组织土地承包合同
- 2024年家庭遗产分配协议
- 2024年度金融科技合作协议
- 2024酒店布草采购合同
- 2024年度离婚财产分配合同:涉及三个未成年子女的抚养权
- MOOC 中医体质学-新乡医学院 中国大学慕课答案
- 【课件】丹纳赫DBS-问题解决培训
- 浙江省宁波市小升初数学真题重组卷
- 家庭成员我照顾(第一课时) 劳动技术七年级下册
- 火电厂信息化建设规划方案
- 技改项目报告
- “中信泰富”事件的反思
- 2024年医学高级职称-皮肤与性病学(医学高级)笔试历年真题荟萃含答案
- 工业机器人系统运维知识竞赛题库及答案(100题)
- 智慧农贸市场解决方案
- 徐州市2023-2024学年九年级上学期期末道德与法治试卷(含答案解析)
评论
0/150
提交评论